EROSION & SEDIMENT POLLUTION CONTROL NARRATIVE

SNIPES TRACT ATHLETIC FIELDS

DOLINGTON ROAD AND QUARRY ROAD LOWER MAKEFIELD TOWNSHIP BUCKS COUNTY, PENNSYLVANIA

PROJECT NO. 1677054L

Prepared for: LOWER MAKEFIELD TOWNSHIP 1100 EDGEWOOD ROAD YARDLEY, PENNSYLVANIA 19067

NOVEMBER 30, 2016

Revised MARCH 2, 2017 Revised JULY 17, 2017

Prepared by:

BOUCHER & JAMES, INC. Consulting Engineers

Corporate Office Fountainville Professional Building 1456 Ferry Road, Building 500 Doylestown, PA 18901 (215) 345-9400 Fax (215) 345-9401

> Regional Office 559 Main Street, Suite 230 Bethlehem, PA 18018 (610) 419-9407

Plan prepared by and under direction of: Maryellen Saylor, P.E. of the Corporate Office

SEAL

IMPORTANT

A copy of this report must be on the site at all times during construction.

TABLE OF CONTENTS

EROSION AND SEDIMENT CONTROL NARRATIVEPage 3
PROJECT DESCRIPTIONPage 3
ANALYSIS OF DOWNSTREAM IMPACTPage 3
RESULTS SUMMARY TABLES AND DESIGN CRITERIAPage 5
COMPUTATION METHODSPage 6
PHYSICAL CHARACTERISTICS AND LIMITATIONS OF SOILSPage 6
SOILS USE LIMITATIONS RESOLUTIONSPage 7
SUMMARY OF STRUCTURAL AND NON-STRUCTURAL E&S CONTROL BMP'SPage 8
EROSION AND SEDIMENT CONTROL NOTESPage 9
EROSION AND SEDIMENT CONTROL STANDARD NOTESPage 11
CONSTRUCTION SEQUENCEPage 13
LIST OF APPENDICES
Appendix A: Site LocationPage A-1
Appendix B: Pre-Development Drainage CalculationsPage B-1
Appendix C: Post-Development Drainage CalculationsPage C-1
• Appendix D: Storm Sewer and Infiltration Trench DesignPage D-1
Appendix E: Erosion and Sediment Control CalculationsPage E-1

- Appendix F: Soils Report.....Page F-1
- Appendix G: E & S Completeness Review Checklist.....Page G-1

ATTACHMENTS

- Pre-Development Drainage Area Plan
- Post-Development Drainage Area Plan

EROSION AND SEDIMENT CONTROL PLAN NARRATIVE

T.M.P. 20-016-001 AND 20-016-002 LOWER MAKEFIELD TOWNSHIP

PROJECT DESCRIPTION

At the request of Lower Makefield Township, a stormwater management and erosion control study was conducted for the land development of a 32.86 acre property. The site is located within the Township owned Snipes Tract on Dolington Road (State Route Number SR 2075) and Quarry Road (Township Road Number T469), northwest of and adjacent to the intersection of the two roads in Lower Makefield Township, Bucks County, PA. The area of the site is 32.86 acres, the property being Tax Map Parcels 20-016-001-001 and 20-016-002. The site presently consists of a paved entrance drive, a gravel loop road, open grassed areas, former tree nursery areas, a salt shed and a buffer of trees along Interstate 95 and the existing adjacent residential properties. The Township proposes the construction of a municipal athletic field complex, which will include one entrance drive each from Dolington Road and Quarry Road, an internal loop road with parking areas, one small and three large athletic fields, a pavilion, a concession stand with restrooms, a future skatepark, a walking trail system, and stormwater management facilities on the site. The site is proposed to be served by public water and sewer. The site will continue to be accessed by an existing drive from Dolington Road and a proposed drive from Quarry Road. The proposed earth disturbance of the site is approximately 24.98 acres. The disturbance of trees will be minimized with the proposed project design. The locations and functions of the proposed detention basin and infiltration trenches have been carefully planned to effectively manage the stormwater, and recharging the stormwater runoff into the ground, where feasible. The protection of the natural resources is one of the main priorities of the development of this site. This study provides relevant site information, including existing and proposed stormwater runoff flow rates and volumes, to assist in the evaluation the proposed project and the preparation of a successful erosion and sedimentation control plan.

ANALYSIS OF DOWNSTREAM IMPACT

The pre-developed site consists of a paved entrance drive, a gravel loop road, open grassed areas, former tree nursery areas, a salt shed and a buffer of trees along Interstate 95 and the existing adjacent residential properties. The drainage areas of the site were analyzed as woodlands, orchard, grass, bare earth, and paved areas. One portion of the site drains southeastward towards Quarry Road, and then to the intersection with Dolington Road to the existing offsite drainage ditch. The remaining area drains eastward towards Dolington Road and then to the intersection with Quarry Road to the existing offsite drainage ditch. The post-developed site will keep the existing drainage patterns generally in place. The proposed storm sewer has been disconnected to discharge overland through rip rap aprons into the detention basin. Infiltration trenches are proposed for ground recharge, stormwater management and water quality before discharging into the detention basin. The proposed development of the site will reduce the runoff rates to the adjacent roads and downstream offsite drainage ditch. There will be

no adverse impacts to the downstream properties with the proposed improvements.

The closest waterway is Buck Creek. The Chapter 93 receiving Water Classification is WWF, MF (Warm Water Fishes, Migratory Fishes).

The amount of stormwater that is discharged through the BMP'S is **2.2** acre-feet during a **2-** year storm.

STANDARD E & S COMPLETENESS REVIEW CHECKLIST NOTES

The E&S Plan is separate from the PCSM Plan, is labeled Erosion and Sedimentation Control Plan and shall be the Final Plan for Construction.

The E&S Plan minimizes the extent and duration of earth disturbance.

The E&S Plan maximizes protection of existing drainage features and vegetation.

The E&S Plan minimizes soil compaction.

The E&S Plan utilizes other measures or controls that prevent or minimize generation of increase stormwater runoff.

The **Present Land Uses for the past five (5) years** have been a leaf and mulch storage yard for the Township Public Works Department and an abandoned tree nursery.

The Past Land Uses for the past 50 years have been agriculture and a tree nursery.

POTENTIAL FOR THERMAL IMPACTS ADDRESSED

Thermal impacts will be minimized by:

- 1. Restricting the disturbance of onsite wooded areas and planting of trees (for shade and reduction of temperature).
- 2. Removing compacted bare ground, stone and paved areas onsite and replacing the areas with grassed athletic fields, which will promote infiltration, velocity of flow reduction and water temperature reduction.
- 3. Disconnection of storm sewer and roof drains to reduce the velocity of flow and allow for infiltration.
- 4. Construction of a stormwater detention basin to collect, cool and potentially infiltrate runoff before it is discharged at a controlled rate.
- 5. Construction of four (4) infiltration trenches to collect, store, cool and infiltrate stormwater runoff.

RESULTS SUMMARY: PEAK RUNOFF RATE TO INTERSECTION OF QUARRY ROAD AND DOLINGTON ROAD

Storm Event (Year)	Rainfall (inches)	Pre-development Conditions (cfs)	Post-development Discharge (cfs)	Postdev Reduction From Pre-dev Condition (%)		
1	2.64	4.91	2.67	45.6%		
2	3.36	13.27	4.86	63.4%		
5	4.32	28.95	10.17	64.9%		
10	5.28	47.69	29.71	37.7%		
25	6.24	68.65	48.35	29.6%		
50	7.20	91.14	64.02	29.8%		
100	8.40	120.75	78.49	35.0%		

The site is located in the Delaware River South Watershed. The peak rate of runoff to the intersection of Quarry Road and Dolington Road will be decreased from actual existing conditions to proposed conditions by 63.4% for the 2-year and 35.0% for the 100-year storms.

The **critical stages of implementation of the PCSM** for which a licensed professional or designee shall be present on-site are the installation of the infiltration trenches, the detention basin, the riprap aprons at the endwalls and the installation of the permanent orifice plate for the detention basin outlet structure.

COMPUTATION METHODS

The design of the stormwater management proposed for this project has been performed with the aid of the Hydraflow Hydrographs Extension for AutoCAD Civil 3D 2009 software package. Hydraflow was developed by Autodesk, Inc., San Rafael, California. The runoff hydrographs were calculated utilizing the Soil Conservation Service (SCS), or also known as the National Resource Conservation Service (NRCS) method within the Hydraflow software.

SOILS CHARACTERISTICS AND LIMITATIONS

		Limitations						
Soil Series & Map Symbol	Bldg w/outBldg w/BasementsBasements		Small Commercial Bldgs	Hydrologic Soil Group	Depth to Seasonal High Water Table	Depth to Bedrock	Erodibility	
Abbottstown Silt Loam, 3 to 8% (AbB)	Very Limited, Depth to saturated zone	Very Limited, Depth to saturated zone	Very Limited, Depth to saturated zone	D	6" - 18"	40"- 60"	Slight - Moderate	
Fountainville Silt Loam, 3 to 8% (FoB)	Very Limited, Depth to saturated zone Limited, Depth to bedrock	Very Limited, Depth to saturated zone Limited, Depth to bedrock	Very Limited, Depth to saturated zone Limited, Depth to bedrock	С	18" - 30"	40"- 60"	Slight- Moderate	
Penns-Lansdale Complex 3 to 8% (PnB)	Not Limited	Not Limited	Not Limited	В	>78"	20"- 40"	Slight- Moderate	

Soils Use Limitations Resolutions

CHARACTERISTIC	RESOLUTION
ERODIBLE	Stabilize immediately after grading. Shape earthwork to reduce concentrated flow areas across bare earth. Provide and maintain effective erosion controls downstream of soil.
HIGH WATER TABLE/ DEPTH TO SATURATION ZONE	Provide adequate underdrain. Avoid basement construction. Any ponded water should be pumped to an adequate erosion and sedimentation control facility. For example, to a sedimentation basin/trap or to a dirt bag.
PONDING	Provide dewatering during construction activities. Provide adequate underdrain/floodproofing for permanent structures.
CUTBANKS CAVE	Use proper slope stabilization, minimize cutbank slope
DEPTH TO HARD BEDROCK	Blasting may be required if bedrock is encountered which is not rippable.
SLOPE	Minimize slope of proposed grading. Use proper slope stabilization.
FROST ACTION	Avoid winter grading.
PIPING/ SEEPAGE	Provide dewatering during construction activities. Provide adequate underdrain/floodproofing for permanent structures. Avoid basement construction. Any ponded water should be pumped to an adequate erosion and sedimentation control facility. For example, to a sedimentation basin/trap or to a dirt bag.
THIN LAYER	Use onsite soils better suited for embankments.

NARRATIVE DESCRIPTION OF EROSION AND SEDIMENT CONTROL BMPS

Structural BMPs:

A construction entrance will be installed prior to construction to provide access into the area of construction.

Tree protection fence will be installed prior to construction to protect the trees to remain throughout the site during construction.

Silt sock will be installed downstream of the areas of disturbance prior to construction to prevent sedimentation from earth disturbance during construction. E-1

Erosion control matting will be installed during construction on the side slopes and berm of the detention basin, the grassed swales and other steep slope areas for stabilization.

Riprap aprons will be installed during construction and remain after construction at the outfall of the stormwater pipes at Endwalls # 1 through #3. Routine maintenance and any necessary repairs will be performed to remove built up sediment and debris.

Silt Sack Inlet Protection will filter out sediment during construction before discharging into the storm sewer. Routine maintenance and any necessary repairs will be performed to remove built up sediment and debris.

The sediment basin will settle out sediment during construction before discharging the stormwater runoff.

The detention basin will reduce the runoff peak rate and the volume and will improve water quality after construction.

Street Sweeping of the proposed parking lot on a regular basis after construction will reduce pollutants and improve water quality of the stormwater runoff.

Non-structural BMPs Low Impact Design (LID) Feature:

Natural hydrologic conditions and drainage features preserved.

Preserve integrity of ecological and biological systems.

Provide recharge of groundwater to manage stormwater close to its source.

EROSION AND SEDIMENT CONTROL NOTES

The erosion and sedimentation control devices referenced in this plan have been designed in accordance with the standards and specifications of the Pennsylvania Department of Environmental Protection (PADEP) Chapter 102 Regulations. These regulations are outlined in the PADEP Bureau of Land and Water Conservation Publication, "Erosion and Sediment Pollution Control Program Manual" dated March 2012 and the Pennsylvania Stormwater Best Management Practices Manual, dated December 2006.

The following erosion and sedimentation control measures and facilities shall be utilized in controlling and preventing erosion and sedimentation.

Vegetated Surface Stabilization – Vegetation will be used as a control measure to achieve either temporary or permanent stabilization of disturbed earth surfaces. Such measures will be considered in place and functional when the required uniform rate of coverage (70%) is obtained.

Seed specifications, liming, fertilizing and seeding mixtures are based on recommendations set forth in the Penn State University's 1991-92, The Agronomy Guide and Section 804 and 805 of PADOT Publication 408, 2000 Edition as amended.

The following liming, fertilizing and seeding specifications shall be applied in conformance with applicable specifications of Section 804 of PADOT Publication 408. Apply mulch in accordance with applicable specifications of Section 805 of PADOT Publication 408.

SEEDING, LIMING & FERTILIZER TYPE	APPLICATION RATE	SEEDING DATES
Temporary Seeding		
Annual Rye Grass	40 lb./ac.*	March 15- October 15
Limestone	1 ton/ac.	
Fertilizer (10-10-10)	50 lb./ac.	
Mulch (hay or straw)	3 ton/ac.	

Permanent Seeding – See Erosion & Sediment Control plan and/or Landscaping Plan for these seed mixes.

Interim Surface Stabilization – This work will consist of placing materials to prevent wash or erosion of seeded project areas until a uniform vegetative covering is achieved, or to allow the conveyance of flows in project water channels at velocities higher than what is permissible with bare earth channels. Mulching without seeding can be used as an interim stabilization control during non-growing seasons of the year. The following specifications apply:

Mulching: Mulch materials, mulch binders, construction and maintenance of these products will be in accordance with the specifications contained in Section 806, PADOT Publication 408.

Commercially produced matting and blankets: Requirements for materials, construction and maintenance of these products will be in accordance with the specifications contained in Section

806, PADOT Publication 408.

Sodding: Seeding materials, construction and maintenance will be in accordance with the specifications contained in Section 809, PADOT Publication 408.

Silt Sock will be installed as a sediment barrier and is to be placed below areas that are to be disturbed. Silt Fence shall be installed level to the slope. Silt Sock barrier locations are shown on the Erosion and Sedimentation Control Plans of this drawing set.

Rock Construction Entrance – Rock construction entrances are constructed of a minimum 8" of AASHTO No. 1 rock on a PADOT Class 2 geotextile fabric, the dimensions are provided on the detail shown on the Erosion and Sedimentation Control Details Sheet of the plan set. The rock construction entrance is located at all the access points to the site to prevent the tracking of mud onto paved streets. The locations of rock construction entrances are shown on the Erosion and Sedimentation Control Plans of this drawing set. Access to the site is not permitted through other locations.

Rip-Rap Apron – The rip-rap aprons shall be constructed as shown on the detail sheet of the drawing set. These aprons will reduce the velocity of water discharged from pipes and will prevent erosion.

Sediment Basin – The sediment basin is designed to retain runoff for an extended duration to allow sediment to settle out.

EROSION / SEDIMENT CONTROL PLAN STANDARD NOTES

Stockpile heights must not exceed 35 feet; stock pile slopes must not exceed 3:1.

The operator/responsible person (O/RP) on site shall assure that the approved erosion and sediment control plan is properly and completely implemented.

Immediately upon discovering unforeseen circumstances posing the potential for accelerated erosion and/or sediment pollution, the O/RP shall implement appropriate Best Management Practices (BMPs) to eliminate the potential for accelerated erosion and/or sediment pollution.

The O/RP shall assure that an erosion and sediment control plan has been prepared, approved by the Bucks County Conservation District and is being implemented and maintained for all soil and/or rock spoil and borrow areas regardless of their locations.

All pumping of sediment-laden water shall be through a sediment control BMP such as a pumped water filter bag discharging over undisturbed areas.

A copy of the approved erosion and sediment control plan must be available on the project site at all times.

Erosion and sediment BMPs must be constructed, stabilized and functional before site disturbance begins within the tributary areas of those BMPs.

After final site stabilization has been achieved, temporary erosion and sediment BMP controls must be removed. Areas disturbed during the removal of the BMPs must be stabilized immediately.

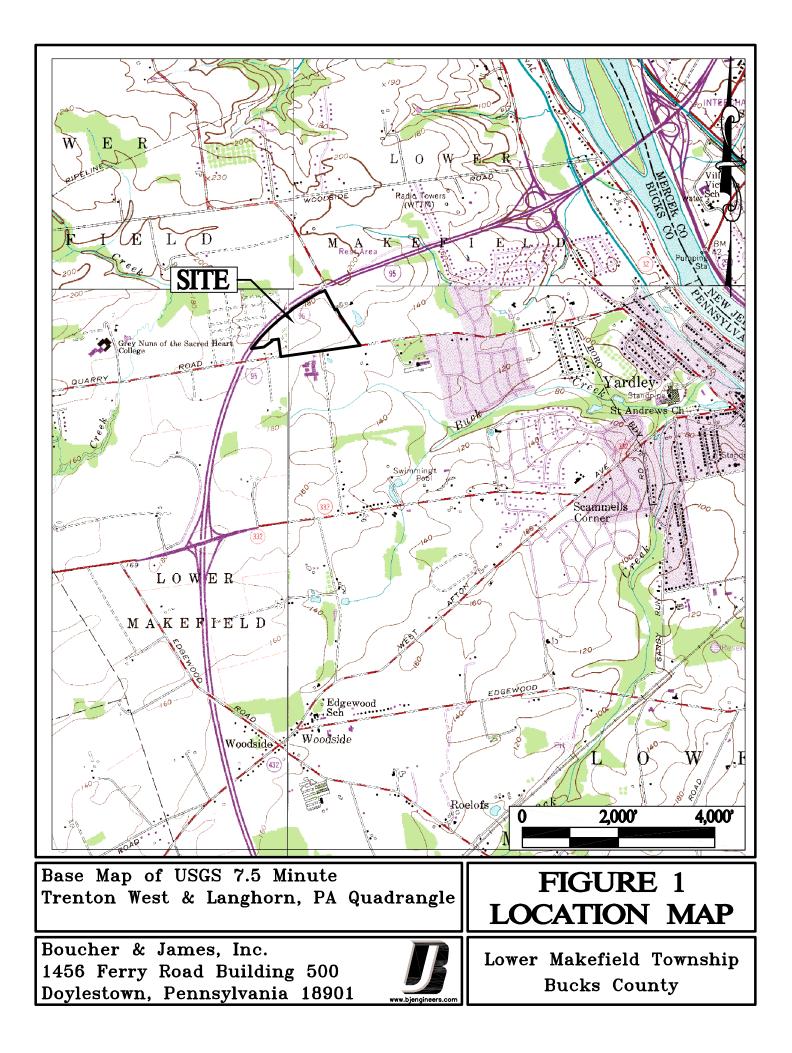
At least seven (7) days before starting any earth disturbance activity, the O/RP shall invite all contractors involved in that activity, the landowner, all appropriate municipal officials, the erosion and sediment control plan designer and the Bucks County Conservation District to a preconstruction meeting. Also, at least three days before starting any earth disturbance activity, all contractors involved in that activity shall notify the Pennsylvania One-Call System Inc. at 1-800-242-1776 to determine any underground utilities locations.

Immediately after earth disturbance activity ceases, the O/RP shall stabilize any areas disturbed by the activity. During non-germinating periods, mulch must be applied at specified rates. Disturbed areas that are not at finished grade and which will be re-disturbed within one year must be stabilized in accordance with temporary vegetative stabilization specifications. Disturbed areas that are at finished grade or which will not be re-disturbed within one year must be stabilized in accordance with permanent vegetative stabilization specifications.

An area shall be considered to have achieved final stabilization when it has a minimum uniform 70% (percent) vegetative or other permanent non-vegetative cover with a density sufficient to resist accelerated surface erosion and subsurface characteristics sufficient to resist sliding and other movements.

Upon the installation of temporary sediment basin riser(s), a qualified site representative shall conduct an immediate inspection of the riser(s), whereupon the Bucks County Conservation District shall be notified in writing that the riser is sealed (watertight).

At stream crossing, a 50-foot buffer shall be maintained. On buffers, clearings, sod disturbances and excavations, equipment traffic should be minimized. Activity such as stacking logs, burning cleared brush, discharging rainwater from trenches, welding pipe sections, refueling and maintaining equipment should be avoided within buffer zones.

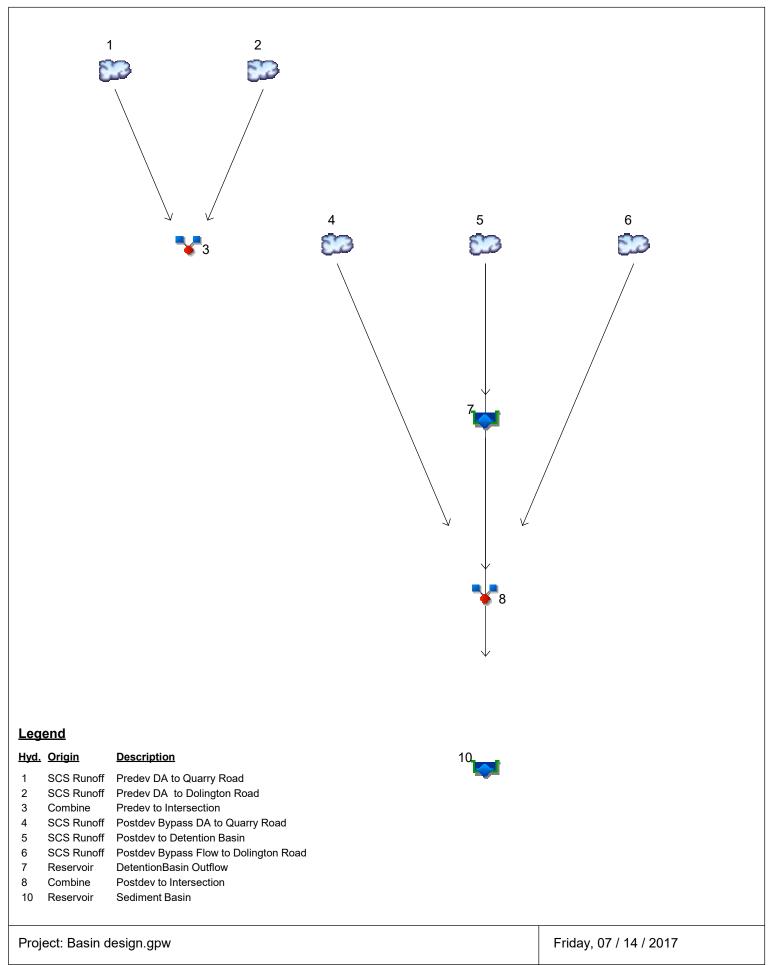

Until a site is stabilized, all erosion and sediment BMPs must be maintained properly. Maintenance must include inspections of all erosion control BMPs after each runoff event and on a weekly basis. All preventative and remedial maintenance work, including cleanout, repair, replacement, re-grading, re-seeding, re-mulching and re-netting must be performed immediately. If erosion and sediment control BMPs fail to perform as expected, replacement BMPs, or modifications of those installed, will be required.

Sediment removed from BMPs shall be disposed of on-site in landscaped areas outside of steep slopes, wetlands, floodplains or drainage swales and immediately stabilized or placed in soil stockpiles and stabilized.

All building material and wastes must be removed from the site and recycled in accordance with DEP's Solid Waste Regulations (25 PA Code 260.1 et seq., 271.1 et seq., and 287.1 et seq.), and/or any additional local, state or federal regulations. No building materials (used or unused) or waste materials shall be burned, buried, dumped or discharged at the site.

APPENDIX A:

SITE LOCATION



APPENDIX B:

PRE-DEVELOPMENT DRAINAGE CALCULATIONS

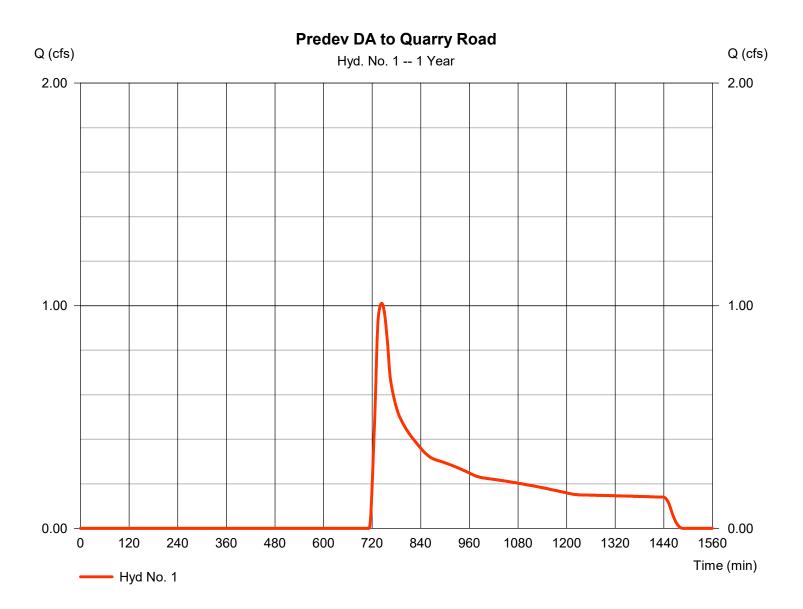
Watershed Model Schematic

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hydrograph Return Period Recap Hydrafiow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

	Hydrograph	Inflow				Hydrograph					
lo.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		1.010	4.002		10.45	18.86	28.40	38.74	52.51	Predev DA to Quarry Road
2	SCS Runoff		3.939	9.282		18.50	29.05	40.49	52.56	68.27	Predev DA to Dolington Road
3	Combine	1, 2	4.906	13.27		28.95	47.69	68.65	91.14	120.75	Predev to Intersection
4	SCS Runoff		0.596	2.070		5.120	9.025	13.44	18.21	24.55	Postdev Bypass DA to Quarry Road
5	SCS Runoff		8.247	16.63		29.87	44.54	60.15	76.42	97.50	Postdev to Detention Basin
6	SCS Runoff		0.200	0.526		1.111	1.789	2.531	3.319	4.364	Postdev Bypass Flow to Dolington Ro
7	Reservoir	5	2.134	2.849		7.914	23.56	37.63	48.89	56.99	DetentionBasin Outflow
8	Combine	4, 6, 7	2.673	4.858		10.17	29.71	48.35	64.02	78.49	Postdev to Intersection
10	Reservoir	5	0.146	0.392		1.417	5.374	21.48	49.63	81.20	Sediment Basin
	1	1	1	1	1	1	1	1	1	1	1

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4


Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	1.010	2	744	11,616				Predev DA to Quarry Road
2	SCS Runoff	3.939	2	736	26,190				Predev DA to Dolington Road
3	Combine	4.906	2	736	37,807	1, 2			Predev to Intersection
4	SCS Runoff	0.596	2	748	6,683				Postdev Bypass DA to Quarry Road
5	SCS Runoff	8.247	2	738	48,117				Postdev to Detention Basin
6	SCS Runoff	0.200	2	732	1,263				Postdev Bypass Flow to Dolington Ro
7	Reservoir	2.134	2	780	46,021	5	161.11	13,460	DetentionBasin Outflow
8	Combine	2.673	2	760	53,967	4, 6, 7			Postdev to Intersection
10	Reservoir	0.146	2	1468	21,337	5	162.53	44,051	Sediment Basin
Bag	sin design.gp				Return	Period: 1 Y	ear	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

Predev DA to Quarry Road

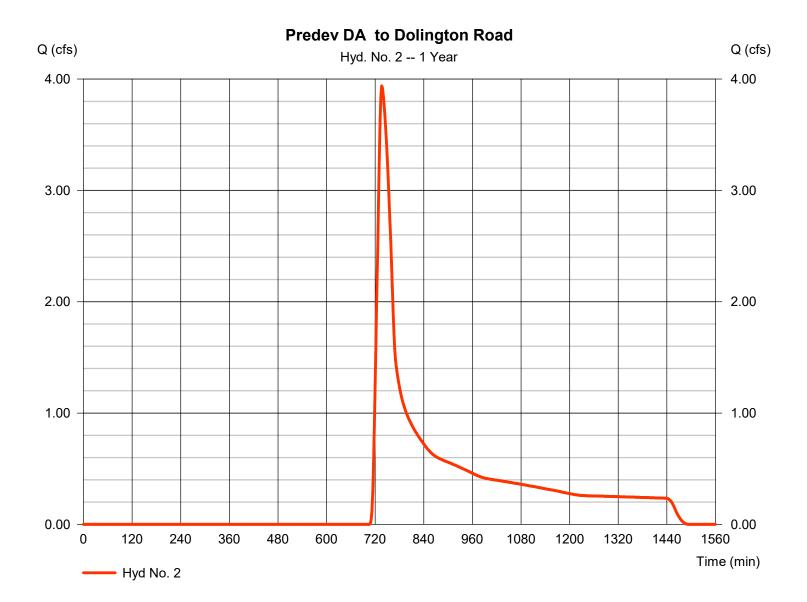
Hydrograph type	= SCS Runoff	Peak discharge	= 1.010 cfs
Storm frequency	= 1 yrs	Time to peak	= 744 min
Time interval	= 2 min	Hyd. volume	= 11,616 cuft
Drainage area	= 16.800 ac	Curve number	= 59
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.10 min
Total precip.	= 2.64 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

4

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

Predev DA to Quarry Road


Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>	
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.350 = 150.0 = 3.36 = 5.33		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00			
Travel Time (min)	= 17.60	+	0.00	+	0.00	=	17.60	
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 280.00 = 2.50 = Unpaved =2.55	b	490.00 4.20 Unpave 3.31	d	920.00 2.10 Paved 2.95			
Travel Time (min)	= 1.83	+	2.47	+	5.21	=	9.50	
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00			
Flow length (ft)	({0})0.0		0.0		0.0			
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00	
Total Travel Time, Tc 2								

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 2

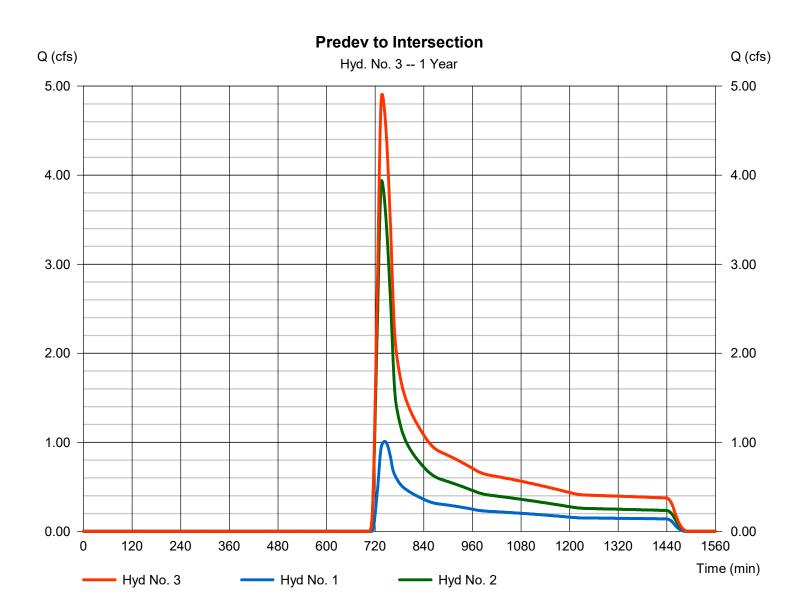
Predev DA to Dolington Road

Hydrograph type	= SCS Runoff	Peak discharge	= 3.939 cfs
Storm frequency	= 1 yrs	Time to peak	= 736 min
Time interval	= 2 min	Hyd. volume	= 26,190 cuft
Drainage area	= 18.600 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 31.20 min
Total precip.	= 2.64 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 2

Predev DA to Dolington Road


Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>	
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.350 = 150.0 = 3.36 = 6.67		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00			
Travel Time (min)	= 16.09	+	0.00	+	0.00	=	16.09	
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 1450.00 = 1.50 = Unpaved =1.98	ł	650.00 3.40 Paved 3.75		0.00 0.00 Paved 0.00			
Travel Time (min)	= 12.23	+	2.89	+	0.00	=	15.12	
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00			
Flow length (ft)	({0})0.0		0.0		0.0			
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00	
Total Travel Time, Tc								

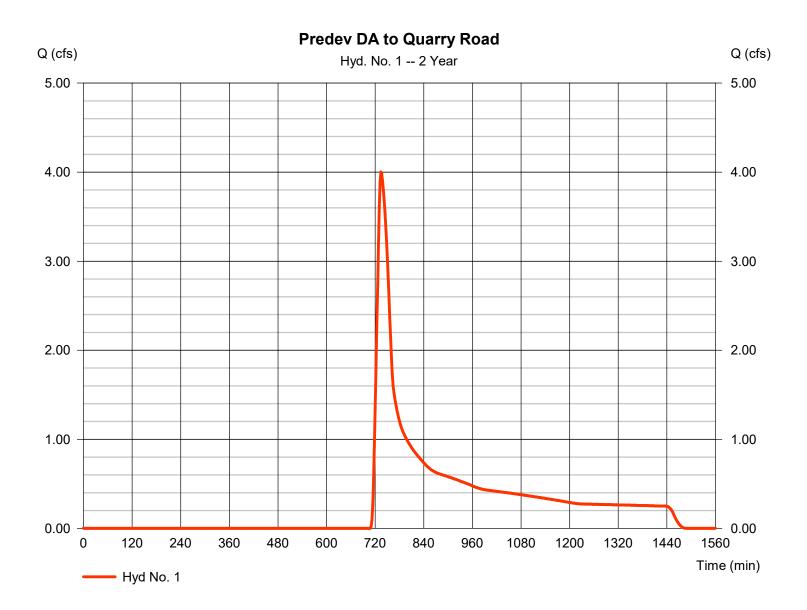
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 3

Predev to Intersection

Hydrograph type	= Combine	Peak discharge	= 4.906 cfs
Storm frequency	= 1 yrs	Time to peak	= 736 min
Time interval	= 2 min	Hyd. volume	= 37,807 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 35.400 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

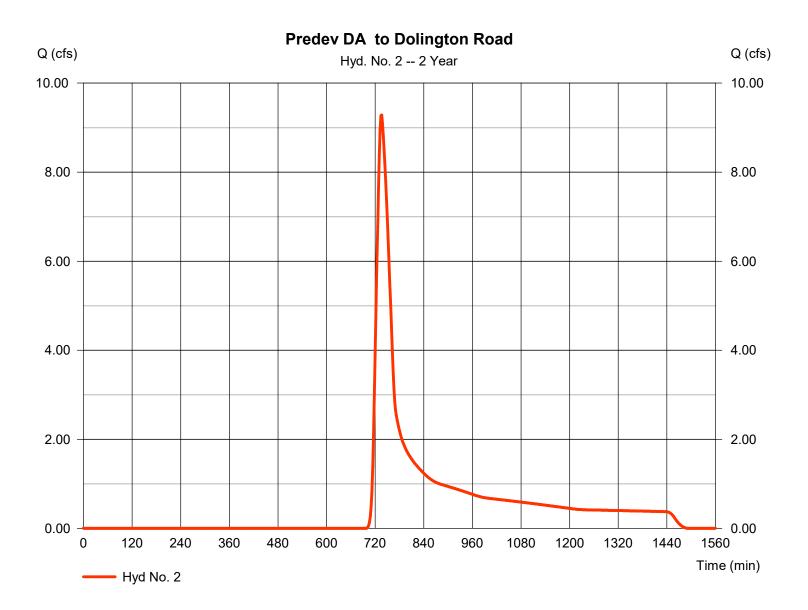

lyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	4.002	2	734	26,520				Predev DA to Quarry Road
2	SCS Runoff	9.282	2	736	49,595				Predev DA to Dolington Road
3	Combine	13.27	2	734	76,115	1, 2			Predev to Intersection
4	SCS Runoff	2.070	2	738	14,751				Postdev Bypass DA to Quarry Road
5	SCS Runoff	16.63	2	736	84,777				Postdev to Detention Basin
6	SCS Runoff	0.526	2	730	2,498				Postdev Bypass Flow to Dolington Ro
7	Reservoir	2.849	2	790	79,181	5	162.19	31,099	DetentionBasin Outflow
8	Combine	4.858	2	746	96,430	4, 6, 7			Postdev to Intersection
10	Reservoir	0.392	2	1460	53,800	5	163.26	71,705	Sediment Basin
Bas	sin design.gp	W			Return	Period: 2 Y	ear	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

Predev DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 4.002 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 26,520 cuft
Drainage area	= 16.800 ac	Curve number	= 59
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.10 min
Total precip.	= 3.36 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

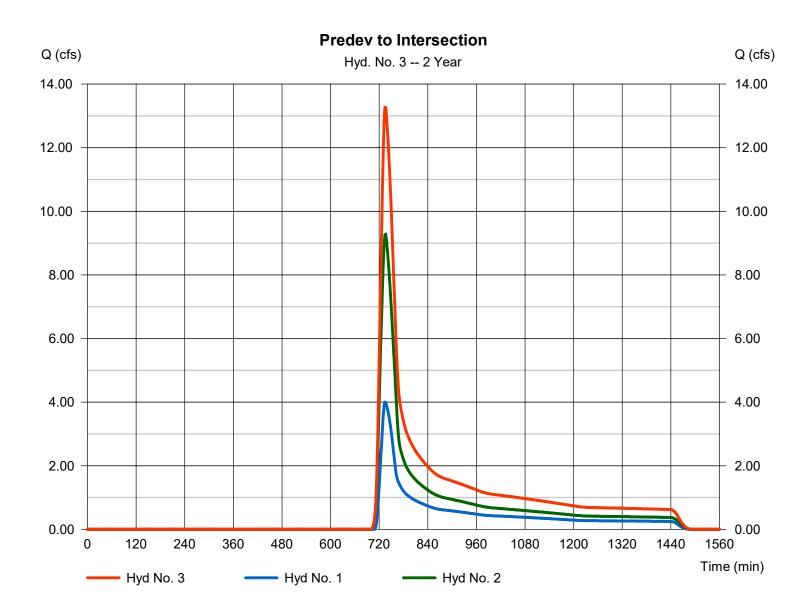


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 2

Predev DA to Dolington Road

Hydrograph type	= SCS Runoff	Peak discharge	= 9.282 cfs
Storm frequency	= 2 yrs	Time to peak	= 736 min
Time interval	= 2 min	Hyd. volume	= 49,595 cuft
Drainage area	= 18.600 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 31.20 min
Total precip.	= 3.36 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


11

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

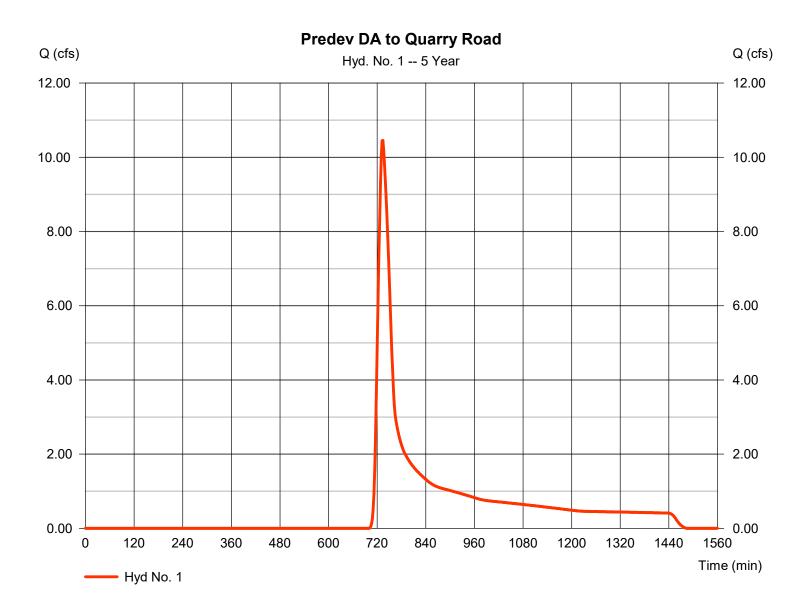
Hyd. No. 3

Predev to Intersection

Hydrograph type	= Combine	Peak discharge	= 13.27 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 76,115 cuft
Inflow hyds.	= 1,2	Contrib. drain. area	= 35.400 ac

12

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4


Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	10.45	2	734	52,999				Predev DA to Quarry Road
2	SCS Runoff	18.50	2	734	87,644				Predev DA to Dolington Road
3	Combine	28.95	2	734	140,643	1, 2			Predev to Intersection
4	SCS Runoff	5.120	2	738	28,851				Postdev Bypass DA to Quarry Road
5	SCS Runoff	29.87	2	736	142,177				Postdev to Detention Basin
6	SCS Runoff	1.111	2	730	4,549				Postdev Bypass Flow to Dolington Ro
7	Reservoir	7.914	2	770	131,400	5	162.86	56,558	DetentionBasin Outflow
8	Combine	10.17	2	766	164,800	4, 6, 7			Postdev to Intersection
10	Reservoir	1.417	2	1072	107,139	5	164.06	103,042	Sediment Basin
Bag	sin design.gp	W			Return F	Period: 5 Ye	ar	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

Predev DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 10.45 cfs
Storm frequency	= 5 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 52,999 cuft
Drainage area	= 16.800 ac	Curve number	= 59
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.10 min
Total precip.	= 4.32 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

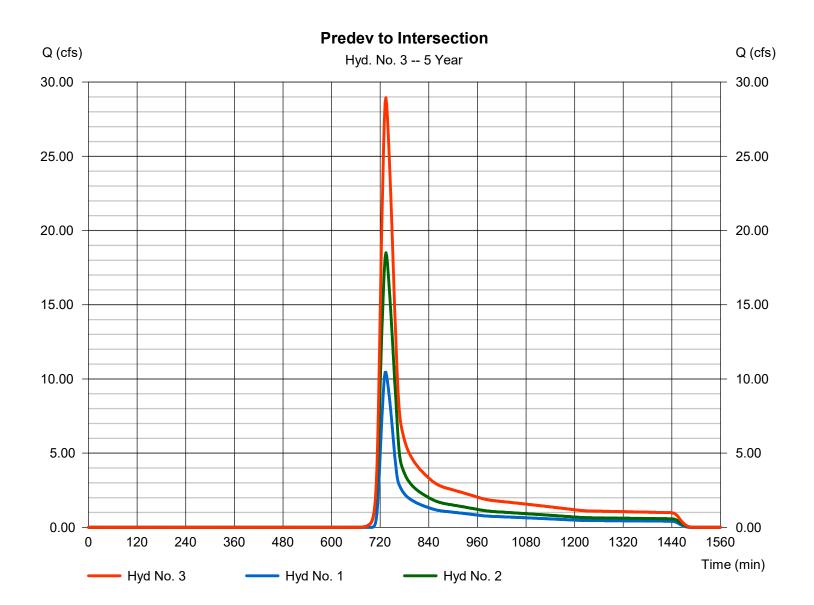
14

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 2

Predev DA to Dolington Road

Hydrograph type	= SCS Runoff	Peak discharge	= 18.50 cfs
Storm frequency	= 5 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 87,644 cuft
Drainage area	= 18.600 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 31.20 min
Total precip.	= 4.32 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



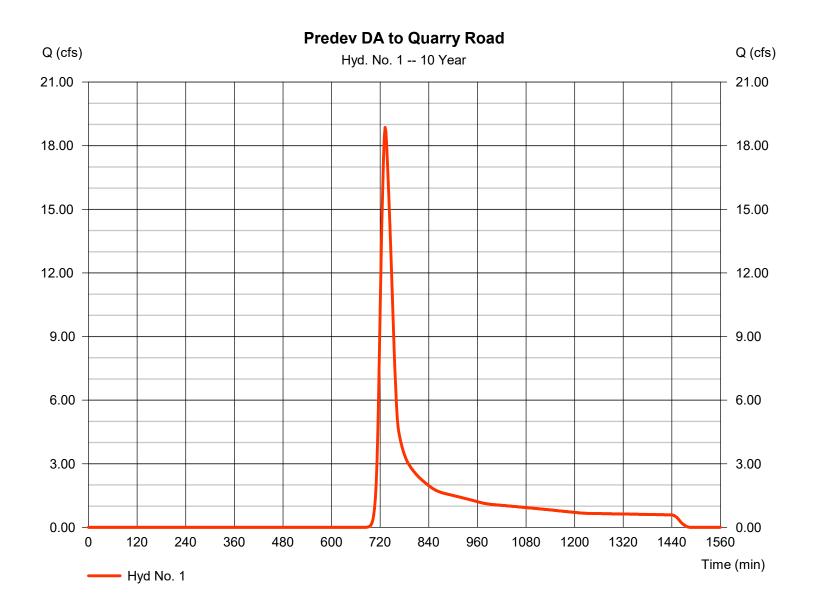
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 3

Predev to Intersection

Hydrograph type	= Combine	Peak discharge	= 28.95 cfs
Storm frequency Time interval	= 5 yrs = 2 min	Time to peak Hyd. volume	= 734 min = 140,643 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 35.400 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4


Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	18.86	2	732	85,143				Predev DA to Quarry Road
2	SCS Runoff	29.05	2	734	131,325				Predev DA to Dolington Road
3	Combine	47.69	2	734	216,468	1, 2			Predev to Intersection
4	SCS Runoff	9.025	2	736	45,822				Postdev Bypass DA to Quarry Road
5	SCS Runoff	44.54	2	736	206,368				Postdev to Detention Basin
6	SCS Runoff	1.789	2	730	6,938				Postdev Bypass Flow to Dolington Ro
7	Reservoir	23.56	2	758	193,132	5	163.21	69,937	DetentionBasin Outflow
8	Combine	29.71	2	754	245,892	4, 6, 7			Postdev to Intersection
10	Reservoir	5.374	2	812	171,233	5	164.26	115,142	Sediment Basin
Bas	sin design.gp	w		1	Return F	Period: 10 \	/ear	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

Predev DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 18.86 cfs
Storm frequency	= 10 yrs	Time to peak	= 732 min
Time interval	= 2 min	Hyd. volume	= 85,143 cuft
Drainage area	= 16.800 ac	Curve number	= 59
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.10 min
Total precip.	= 5.28 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

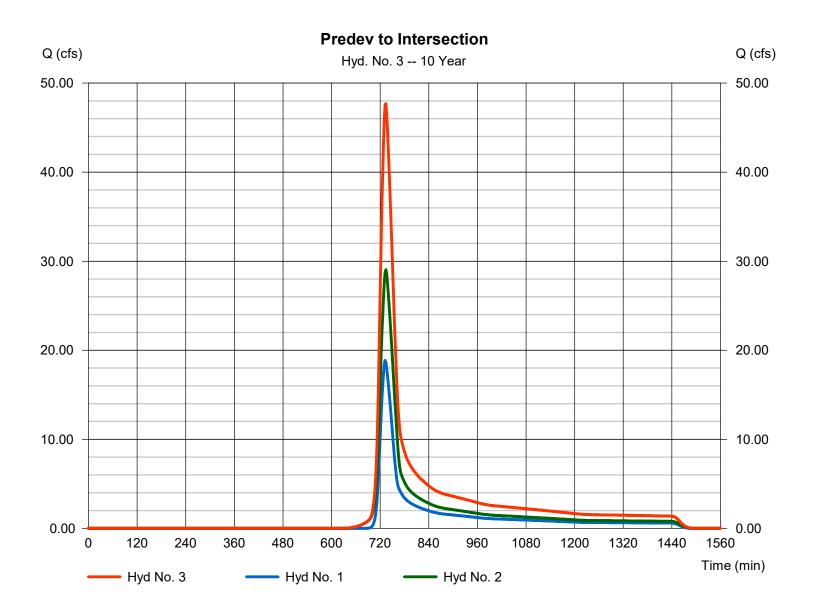


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 2

Predev DA to Dolington Road

Peak discharge	= 29.05 cfs
Time to peak	= 734 min
Hyd. volume	= 131,325 cuft
Curve number	= 66
Hydraulic length	= 0 ft
Time of conc. (Tc)	= 31.20 min
Distribution	= Type II
Shape factor	= 484
	Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution



Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

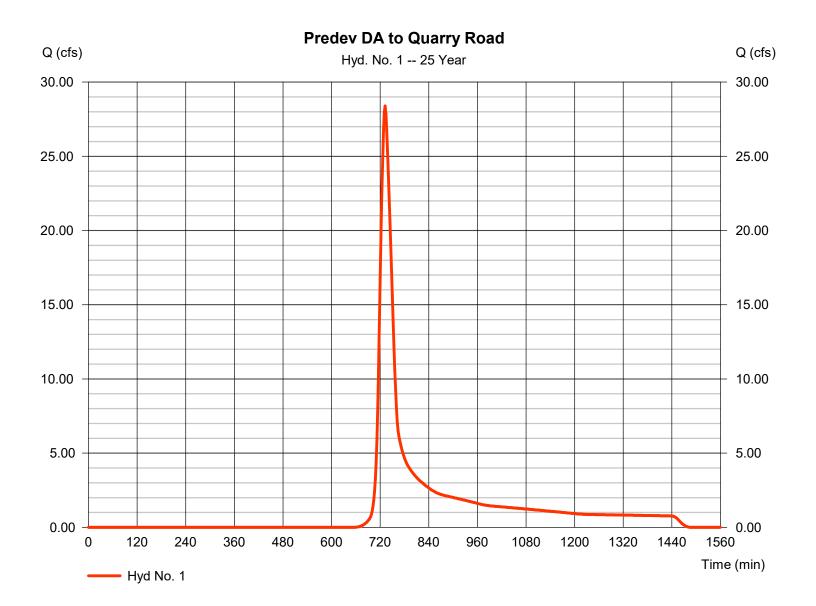
Hyd. No. 3

Predev to Intersection

Hydrograph type Storm frequency	= Combine = 10 yrs	Peak discharge Time to peak	= 47.69 cfs = 734 min
Time interval	$= 2 \min$	Hyd. volume	= 216,468 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 35.400 ac

20

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

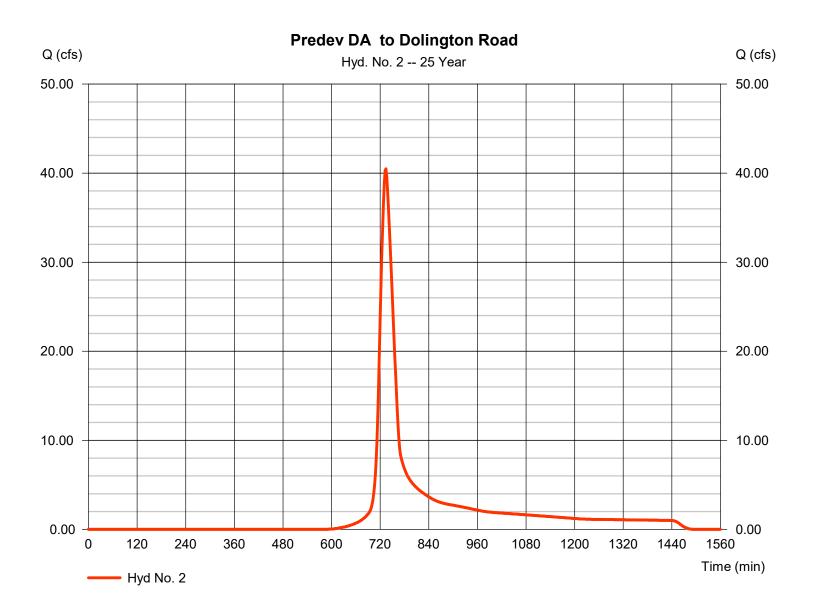

lyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	28.40	2	732	121,583				Predev DA to Quarry Road
2	SCS Runoff	40.49	2	734	179,073				Predev DA to Dolington Road
3	Combine	68.65	2	732	300,655	1, 2			Predev to Intersection
4	SCS Runoff	13.44	2	736	64,950				Postdev Bypass DA to Quarry Road
5	SCS Runoff	60.15	2	736	275,325				Postdev to Detention Basin
6	SCS Runoff	2.531	2	730	9,575				Postdev Bypass Flow to Dolington Ro
7	Reservoir	37.63	2	754	259,891	5	163.54	82,182	DetentionBasin Outflow
3	Combine	48.35	2	748	334,416	4, 6, 7			Postdev to Intersection
10	Reservoir	21.48	2	764	240,116	5	164.55	132,035	Sediment Basin
Bas	sin design.gp	w			Return F	Period: 25 `	Year	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

Predev DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 28.40 cfs
Storm frequency	= 25 yrs	Time to peak	= 732 min
Time interval	= 2 min	Hyd. volume	= 121,583 cuft
Drainage area	= 16.800 ac	Curve number	= 59
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.10 min
Total precip.	= 6.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

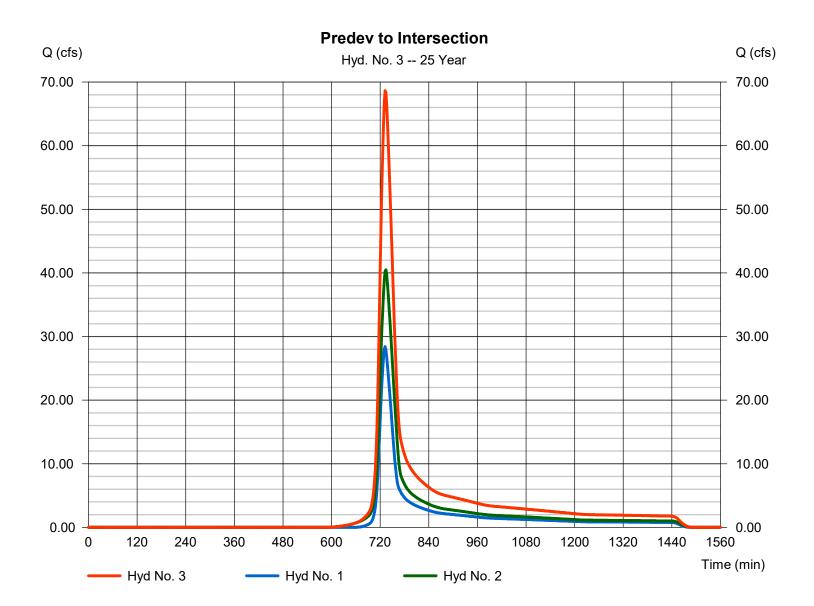


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 2

Predev DA to Dolington Road

Hydrograph type	= SCS Runoff	Peak discharge	= 40.49 cfs
Storm frequency	= 25 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 179,073 cuft
Drainage area	= 18.600 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 31.20 min
Total precip.	= 6.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


23

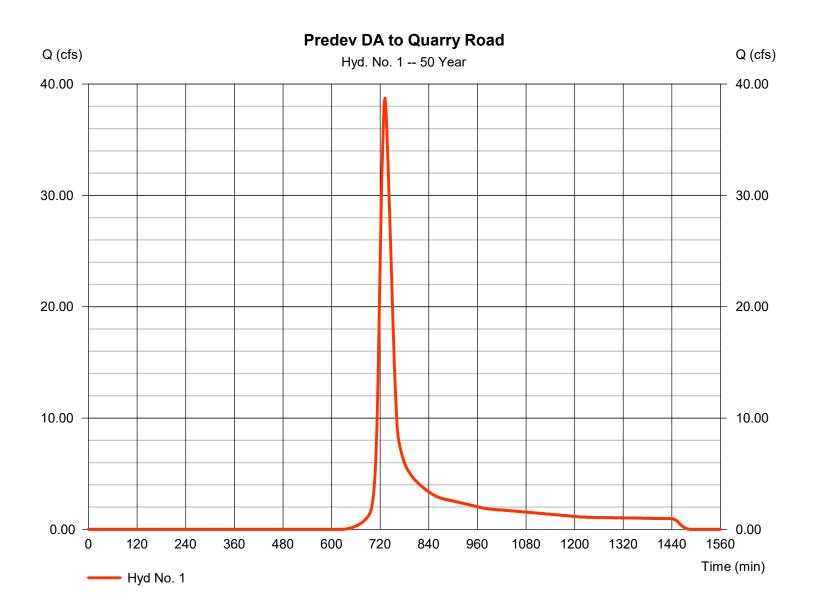
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 3

Predev to Intersection

Hydrograph type	= Combine	Peak discharge	= 68.65 cfs
Storm frequency	= 25 yrs	Time to peak	= 732 min
Time interval	= 2 min	Hyd. volume	= 300,655 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 35.400 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

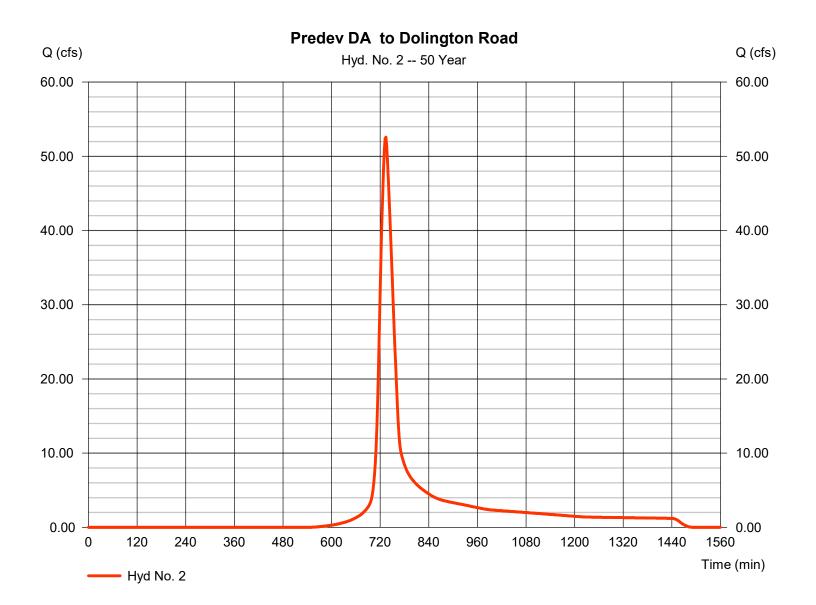

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	38.74	2	732	161,349				Predev DA to Quarry Road
2	SCS Runoff	52.56	2	734	229,853				Predev DA to Dolington Road
3	Combine	91.14	2	732	391,201	1, 2			Predev to Intersection
4	SCS Runoff	18.21	2	736	85,739				Postdev Bypass DA to Quarry Road
5	SCS Runoff	76.42	2	734	347,759				Postdev to Detention Basin
6	SCS Runoff	3.319	2	728	12,398				Postdev Bypass Flow to Dolington Ro
7	Reservoir	48.89	2	752	330,285	5	163.95	97,741	DetentionBasin Outflow
8	Combine	64.02	2	746	428,422	4, 6, 7			Postdev to Intersection
10	Reservoir	49.63	2	752	312,487	5	164.71	140,946	Sediment Basin
Bas	sin design.gp	w			Return F	Period: 50 \	Year	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

Predev DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 38.74 cfs
Storm frequency	= 50 yrs	Time to peak	= 732 min
Time interval	= 2 min	Hyd. volume	= 161,349 cuft
Drainage area	= 16.800 ac	Curve number	= 59
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.10 min
Total precip.	= 7.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

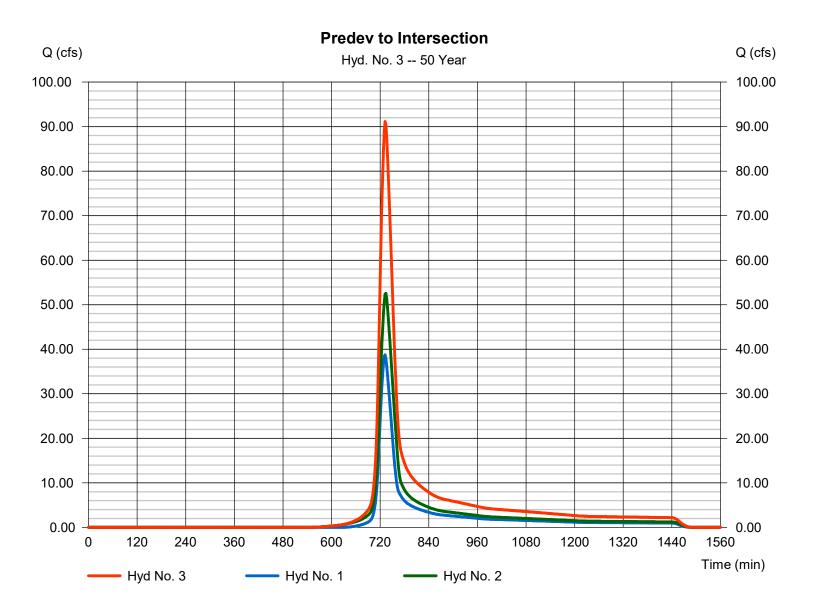


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 2

Predev DA to Dolington Road

Hydrograph type	= SCS Runoff	Peak discharge	= 52.56 cfs
Storm frequency	= 50 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 229,853 cuft
Drainage area	= 18.600 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 31.20 min
Total precip.	= 7.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

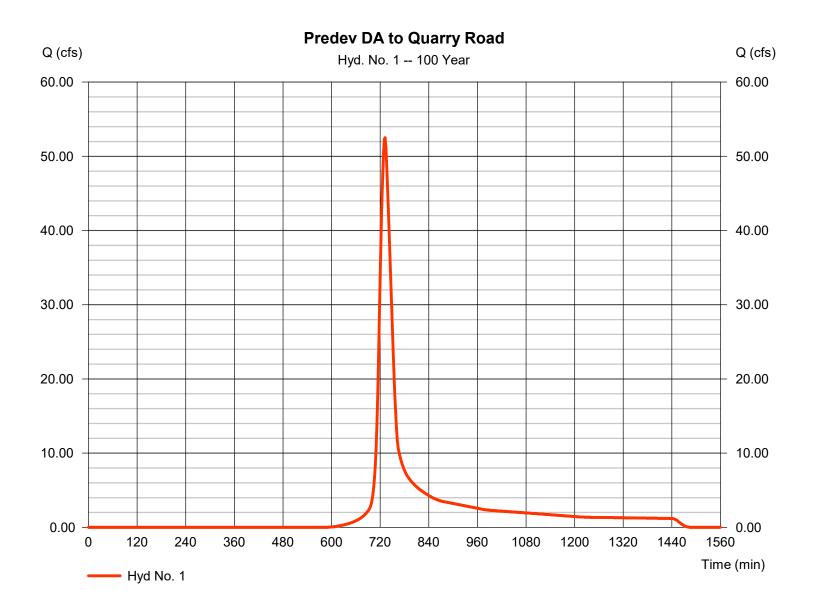
Hyd. No. 3

Predev to Intersection

Hydrograph type Storm frequency	= Combine = 50 yrs	Peak discharge Time to peak	= 91.14 cfs = 732 min
Time interval	= 2 min	Hyd. volume	= 391,201 cuft
Inflow hyds.	= 1,2	Contrib. drain. area	= 35.400 ac

28

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

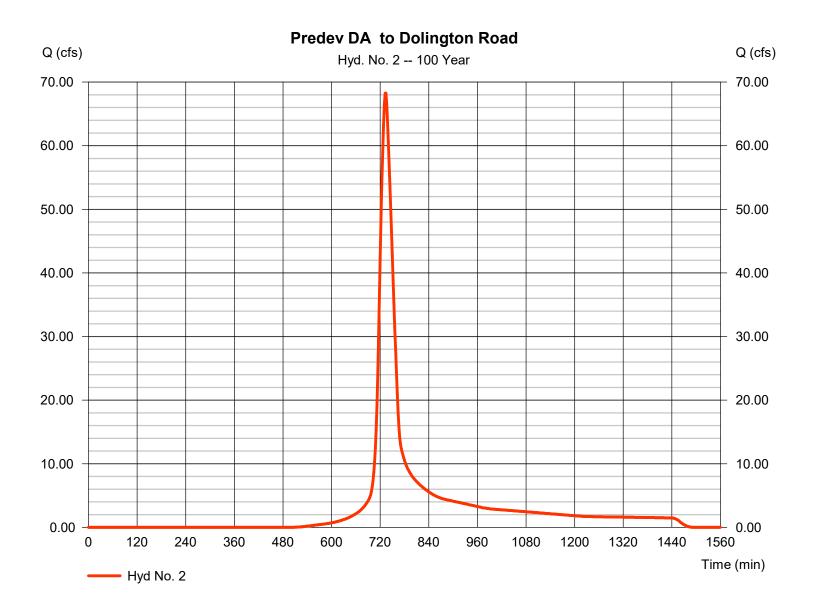

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	52.51	2	732	214,688				Predev DA to Quarry Road
2	SCS Runoff	68.27	2	734	296,529				Predev DA to Dolington Road
3	Combine	120.75	2	732	511,218	1, 2			Predev to Intersection
4	SCS Runoff	24.55	2	736	113,531				Postdev Bypass DA to Quarry Road
5	SCS Runoff	97.50	2	734	441,899				Postdev to Detention Basin
6	SCS Runoff	4.364	2	728	16,126				Postdev Bypass Flow to Dolington Ro
7	Reservoir	56.99	2	754	422,212	5	164.42	124,298	DetentionBasin Outflow
8	Combine	78.49	2	740	551,870	4, 6, 7			Postdev to Intersection
10	Reservoir	81.20	2	744	406,561	5	164.83	148,276	Sediment Basin
Bas	sin design.gp	 w			Return F	Period: 100	Year	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

Predev DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 52.51 cfs
Storm frequency	= 100 yrs	Time to peak	= 732 min
Time interval	= 2 min	Hyd. volume	= 214,688 cuft
Drainage area	= 16.800 ac	Curve number	= 59
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.10 min
Total precip.	= 8.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

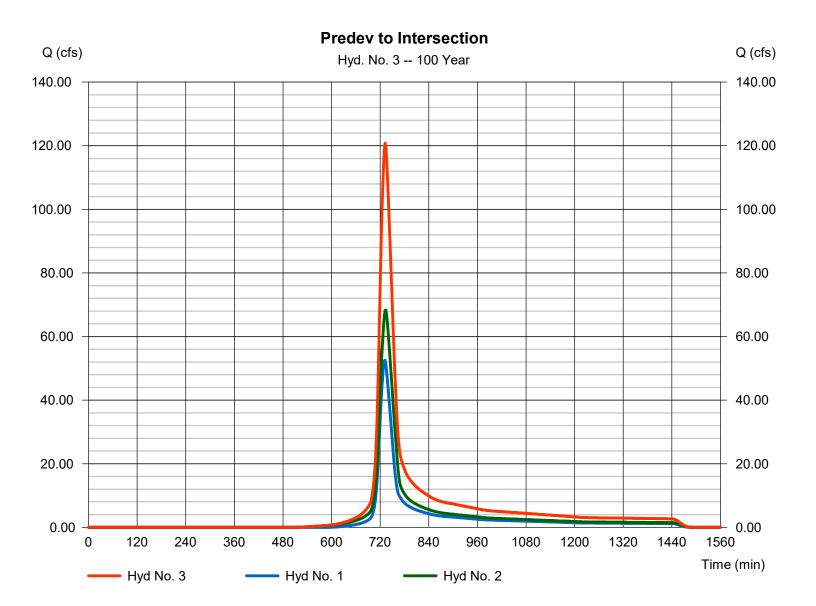


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 2

Predev DA to Dolington Road

Hydrograph type	= SCS Runoff	Peak discharge	= 68.27 cfs
Storm frequency	= 100 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 296,529 cuft
Drainage area	= 18.600 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 31.20 min
Total precip.	= 8.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 3

Predev to Intersection

Hydrograph type Storm frequency	= Combine = 100 yrs	Peak discharge Time to peak	= 120.75 cfs = 732 min
Time interval	= 2 min	Hyd. volume	= 511,218 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 35.400 ac

Hydraflow Table of Contents

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Watershed Model Schematic	1
Hydrograph Return Period Recap	2

1 - Year	
----------	--

ę	Summary Report	3
	Hydrograph Reports	
	Hydrograph No. 1, SCS Runoff, Predev DA to Quarry Road	4
	TR-55 Tc Worksheet	5
	Hydrograph No. 2, SCS Runoff, Predev DA to Dolington Road	6
	TR-55 Tc Worksheet	7
	Hydrograph No. 3, Combine, Predev to Intersection	. 8

2 - Year

Summary Report	. 9
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Predev DA to Quarry Road	
Hydrograph No. 2, SCS Runoff, Predev DA to Dolington Road	
Hydrograph No. 3, Combine, Predev to Intersection	

5 - Year

Summary Report	13
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Predev DA to Quarry Road	
Hydrograph No. 2, SCS Runoff, Predev DA to Dolington Road	
Hydrograph No. 3, Combine, Predev to Intersection	

10 - Year

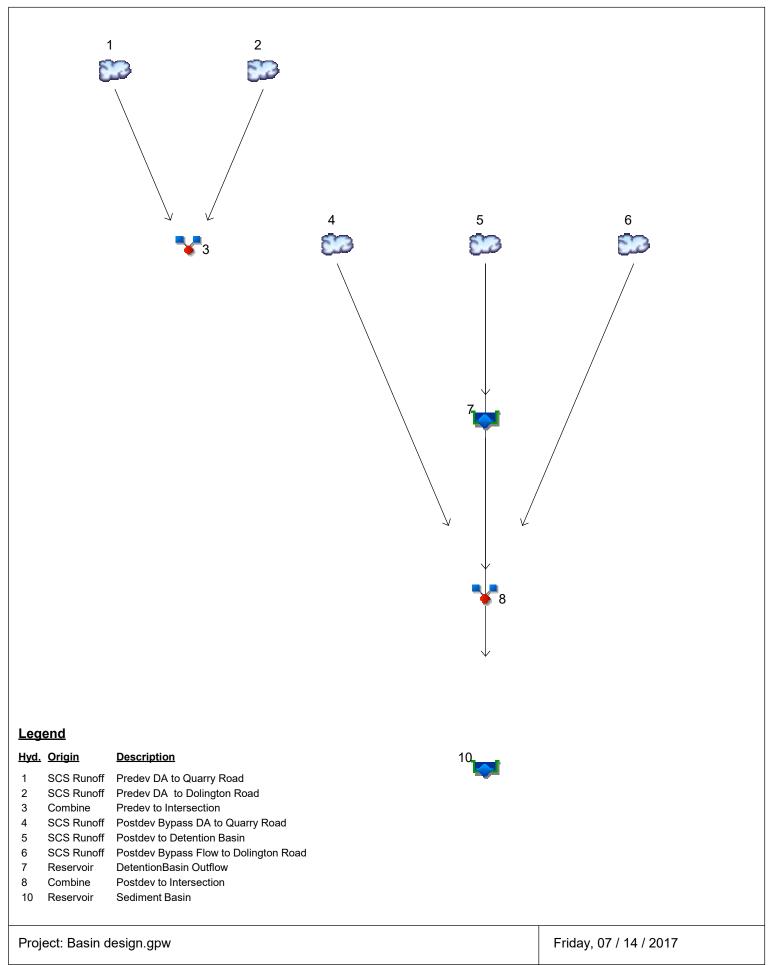
Summary Report	17
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Predev DA to Quarry Road	
Hydrograph No. 2, SCS Runoff, Predev DA to Dolington Road	
Hydrograph No. 3, Combine, Predev to Intersection	

25 - Year

Summary Report	. 21
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Predev DA to Quarry Road	
Hydrograph No. 2, SCS Runoff, Predev DA to Dolington Road	
Hydrograph No. 3, Combine, Predev to Intersection	

50 - Year

Summary Report	. 25
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Predev DA to Quarry Road	
Hydrograph No. 2, SCS Runoff, Predev DA to Dolington Road	. 27
Hydrograph No. 3, Combine, Predev to Intersection	


100 - Year Summary Boport

29
30
30
31
32

POST-DEVELOPMENT DRAINAGE CALCULATIONS

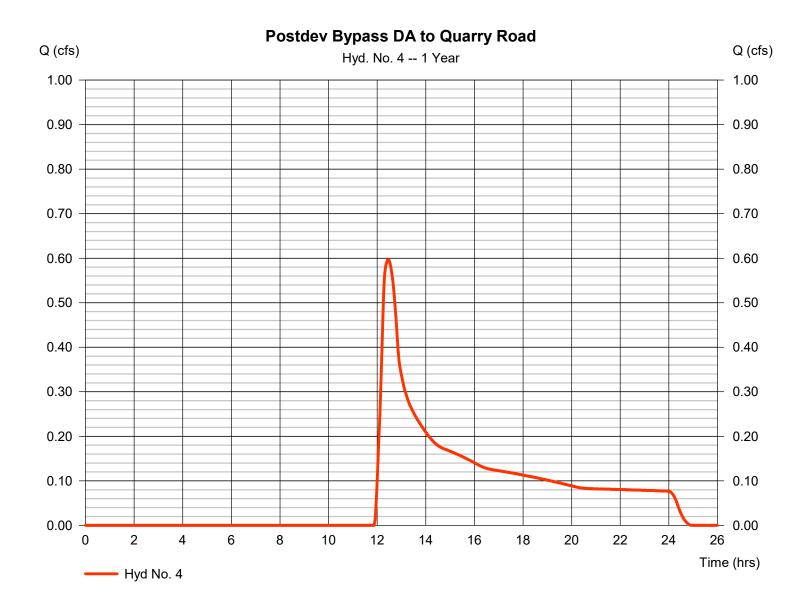
Watershed Model Schematic

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hydrograph Return Period Recap Hydrafiow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

	Hydrograph					Hydrograph					
lo.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		1.010	4.002		10.45	18.86	28.40	38.74	52.51	Predev DA to Quarry Road
2	SCS Runoff		3.939	9.282		18.50	29.05	40.49	52.56	68.27	Predev DA to Dolington Road
3	Combine	1, 2	4.906	13.27		28.95	47.69	68.65	91.14	120.75	Predev to Intersection
4	SCS Runoff		0.596	2.070		5.120	9.025	13.44	18.21	24.55	Postdev Bypass DA to Quarry Road
5	SCS Runoff		8.247	16.63		29.87	44.54	60.15	76.42	97.50	Postdev to Detention Basin
6	SCS Runoff		0.200	0.526		1.111	1.789	2.531	3.319	4.364	Postdev Bypass Flow to Dolington Ro
7	Reservoir	5	2.134	2.849		7.914	23.56	37.63	48.89	56.99	DetentionBasin Outflow
8	Combine	4, 6, 7	2.673	4.858		10.17	29.71	48.35	64.02	78.49	Postdev to Intersection
10	Reservoir	5	0.146	0.392		1.417	5.374	21.48	49.63	81.20	Sediment Basin
	1	1	1	1	1	1	1	1	1	1	1

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4


Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	1.010	2	744	11,616				Predev DA to Quarry Road
2	SCS Runoff	3.939	2	736	26,190				Predev DA to Dolington Road
3	Combine	4.906	2	736	37,807	1, 2			Predev to Intersection
4	SCS Runoff	0.596	2	748	6,683				Postdev Bypass DA to Quarry Road
5	SCS Runoff	8.247	2	738	48,117				Postdev to Detention Basin
6	SCS Runoff	0.200	2	732	1,263				Postdev Bypass Flow to Dolington Ro
7	Reservoir	2.134	2	780	46,021	5	161.11	13,460	DetentionBasin Outflow
8	Combine	2.673	2	760	53,967	4, 6, 7			Postdev to Intersection
10	Reservoir	0.146	2	1468	21,337	5	162.53	44,051	Sediment Basin
Bag	sin design.gp				Return	Period: 1 Y	ear	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 4

Postdev Bypass DA to Quarry Road

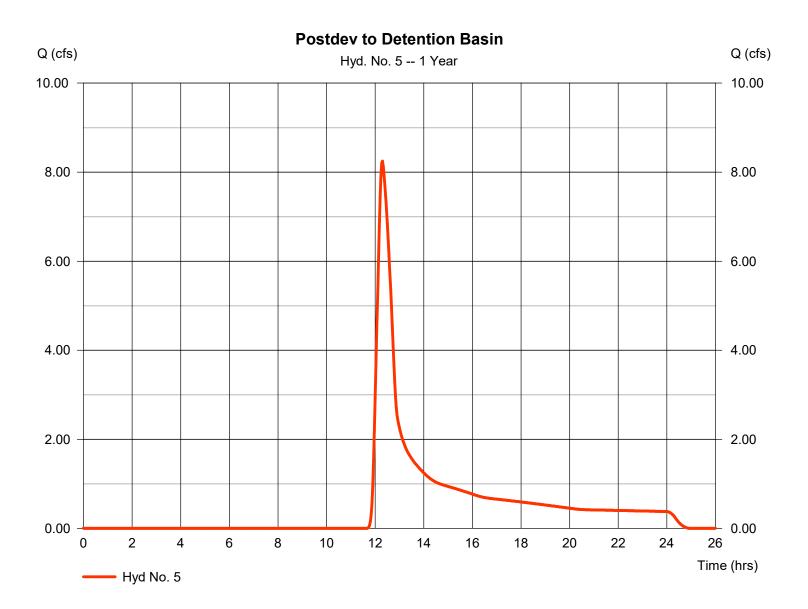
Hydrograph type	= SCS Runoff	Peak discharge	= 0.596 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.47 hrs
Time interval	= 2 min	Hyd. volume	= 6,683 cuft
Drainage area	= 8.700 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.80 min
Total precip.	= 2.64 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

4

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 4

Postdev Bypass DA to Quarry Road


Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.400 = 150.0 = 3.36 = 2.67		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 25.82	+	0.00	+	0.00	=	25.82
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 580.00 = 3.60 = Unpaved =3.06	ł	1260.00 2.30 Paved 3.08		0.00 0.00 Paved 0.00		
Travel Time (min)	= 3.16	+	6.81	+	0.00	=	9.97
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 5

Postdev to Detention Basin

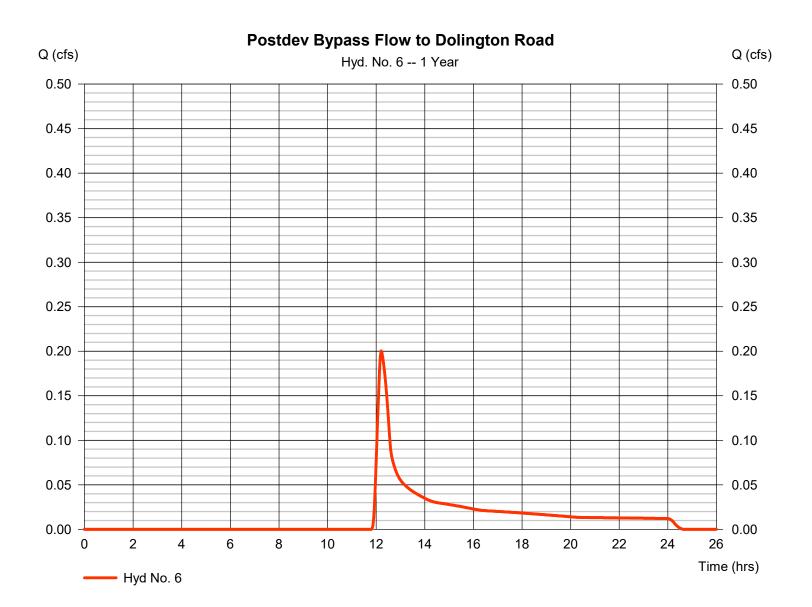
Hydrograph type	= SCS Runoff	Peak discharge	= 8.247 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.30 hrs
Time interval	= 2 min	Hyd. volume	= 48,117 cuft
Drainage area	= 25.600 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 36.30 min
Total precip.	= 2.64 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

6

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 5

Postdev to Detention Basin


Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.400 = 150.0 = 3.36 = 2.20		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 27.90	+	0.00	+	0.00	=	27.90
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 660.00 = 1.70 = Unpaved =2.10	t	250.00 0.60 Paved 1.57		65.00 1.50 Unpave 1.98	ed	
Travel Time (min)	= 5.23	+	2.65	+	0.55	=	8.42
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 6

Postdev Bypass Flow to Dolington Road

Hydrograph type	= SCS Runoff	Peak discharge	= 0.200 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.20 hrs
Time interval	= 2 min	Hyd. volume	= 1,263 cuft
Drainage area	= 1.100 ac	Curve number	= 64
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 24.90 min
Total precip.	= 2.64 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

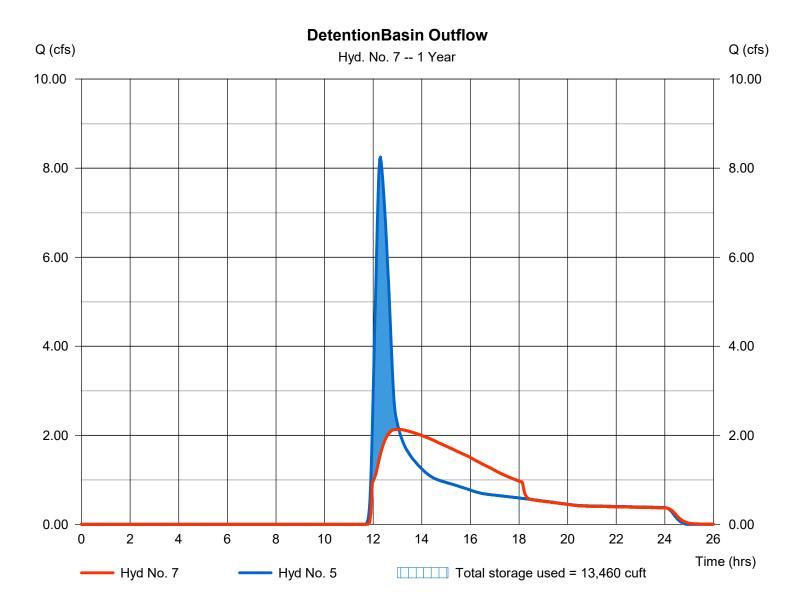
8

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 6

Postdev Bypass Flow to Dolington Road

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.400 = 150.0 = 3.36 = 3.60		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 22.91	+	0.00	+	0.00	=	22.91
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 400.00 = 4.40 = Unpaved =3.38	ł	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 1.97	+	0.00	+	0.00	=	1.97
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)					0.0		
	({0})0.0		0.0		0.0		
Travel Time (min)	({0})0.0 = 0.00	+	0.0 0.00	+	0.0 0.00	=	0.00


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 7

DetentionBasin Outflow

Hydrograph type Storm frequency Time interval Inflow hyd. No. Reservoir name	 Reservoir 1 yrs 2 min 5 - Postdev to Detention Basic Basin No. 1 		= 2.134 cfs = 13.00 hrs = 46,021 cuft = 161.11 ft = 13.460 cuft
Reservoir name	= Basin No. 1	Max. Storage	= 13,460 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

10

Pond Report

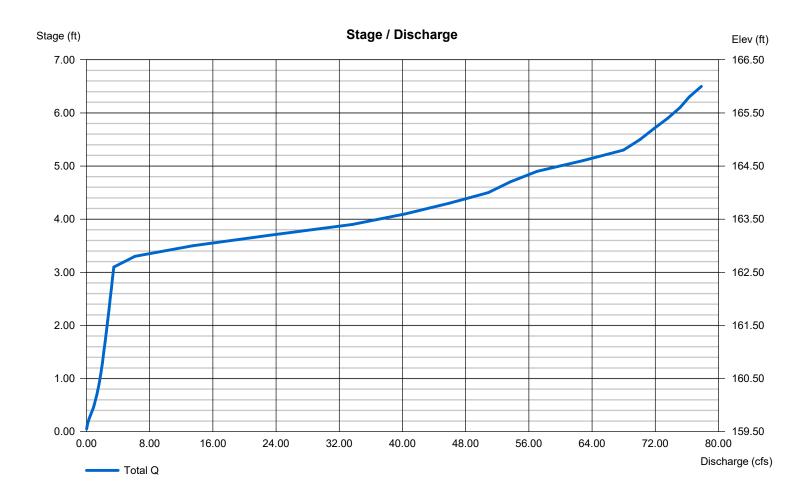
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Pond No. 1 - Basin No. 1

Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 159.50 ft

Stage / Storage Table

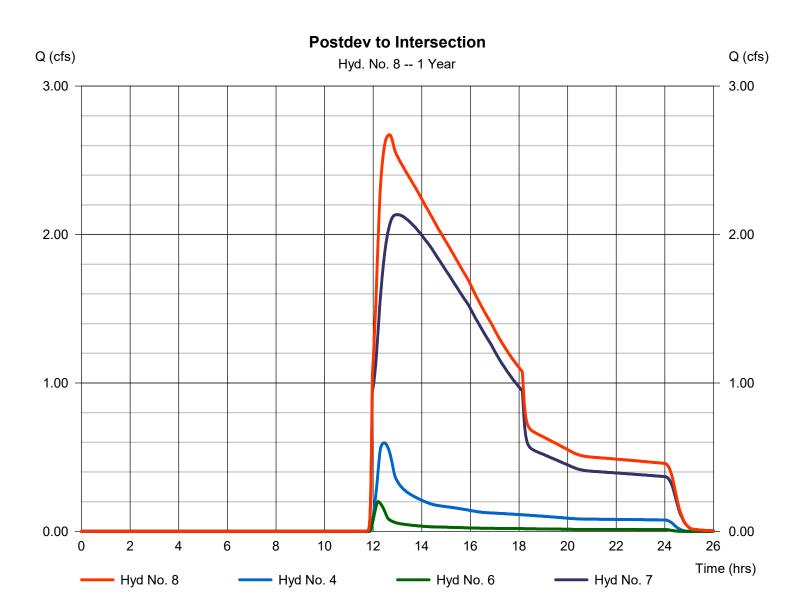

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	159.50	00	0	0	
0.50	160.00	1,543	386	386	
2.50	162.00	22,000	23,543	23,929	
4.50	164.00	53,882	75,882	99,811	
6.50	166.00	62,428	116,310	216,121	

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 36.00	6.00	8.00	0.00	Crest Len (ft)	= 12.00	100.00	Inactive	Inactive
Span (in)	= 36.00	6.00	45.00	0.00	Crest El. (ft)	= 164.00	164.50	0.00	0.00
No. Barrels	= 1	2	4	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 159.30	159.50	162.66	0.00	Weir Type	= 1	Broad	Rect	Rect
Length (ft)	= 45.00	0.00	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 2.89	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.500 (by	Contour)		
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00			

Weir Structures

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).


11

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

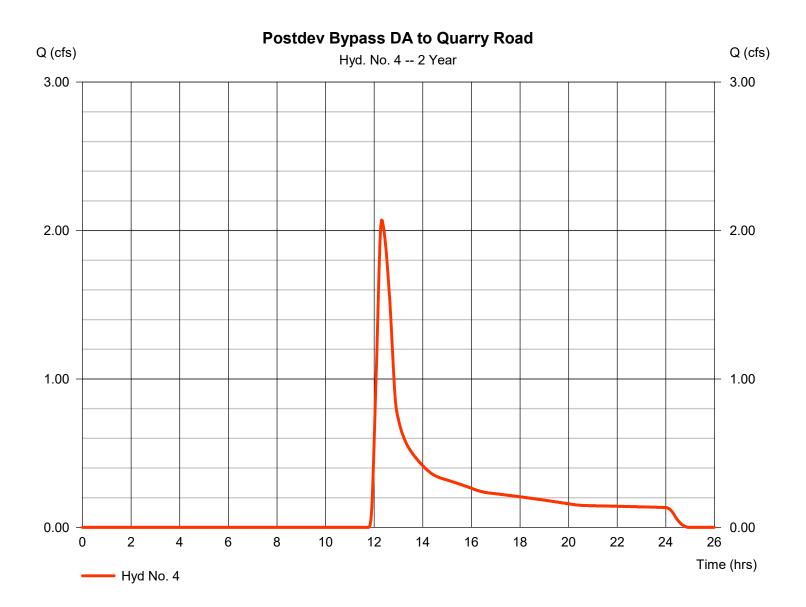
Hyd. No. 8

Postdev to Intersection

Hydrograph type	= Combine	Peak discharge	= 2.673 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.67 hrs
Time interval	= 2 min	Hyd. volume	= 53,967 cuft
Inflow hyds.	= 4, 6, 7	Contrib. drain. area	= 9.800 ac

3D® 2015 by Autodesk Inc. v10 1

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

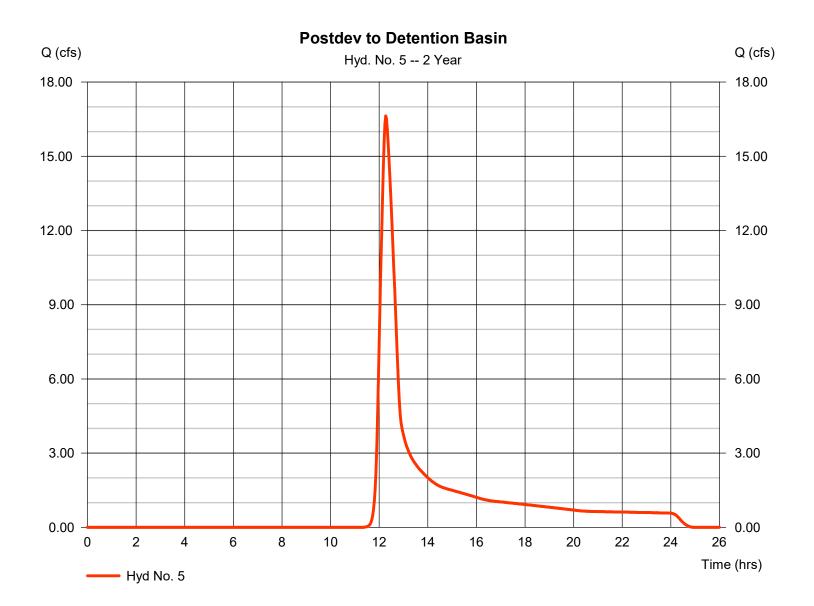

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	4.002	2	734	26,520				Predev DA to Quarry Road
2	SCS Runoff	9.282	2	736	49,595				Predev DA to Dolington Road
3	Combine	13.27	2	734	76,115	1, 2			Predev to Intersection
4	SCS Runoff	2.070	2	738	14,751				Postdev Bypass DA to Quarry Road
5	SCS Runoff	16.63	2	736	84,777				Postdev to Detention Basin
6	SCS Runoff	0.526	2	730	2,498				Postdev Bypass Flow to Dolington Ro
7	Reservoir	2.849	2	790	79,181	5	162.19	31,099	DetentionBasin Outflow
8	Combine	4.858	2	746	96,430	4, 6, 7			Postdev to Intersection
10	Reservoir	0.392	2	1460	53,800	5	163.26	71,705	Sediment Basin
Bag	sin design.gp				Return	Period: 2 Ye	ar	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 4

Postdev Bypass DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 2.070 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.30 hrs
Time interval	= 2 min	Hyd. volume	= 14,751 cuft
Drainage area	= 8.700 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.80 min
Total precip.	= 3.36 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

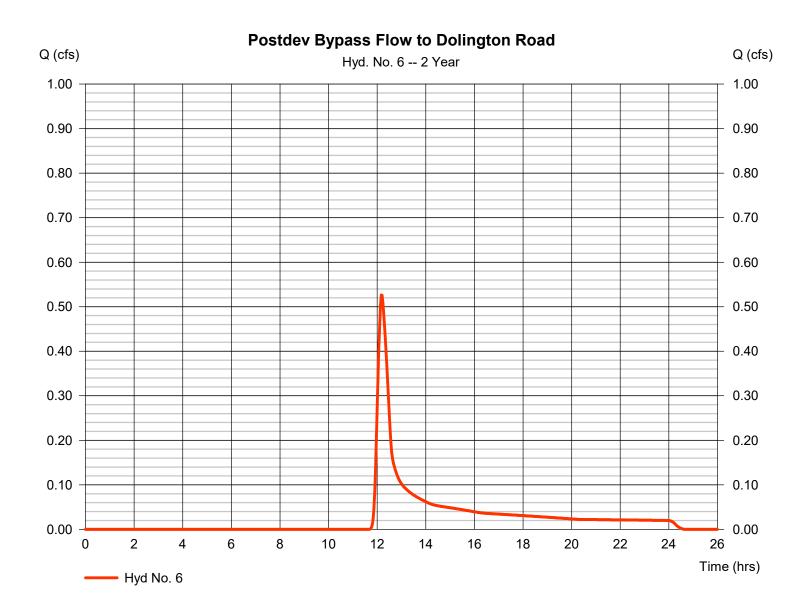


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 5

Postdev to Detention Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 16.63 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 84,777 cuft
Drainage area	= 25.600 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 36.30 min
Total precip.	= 3.36 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

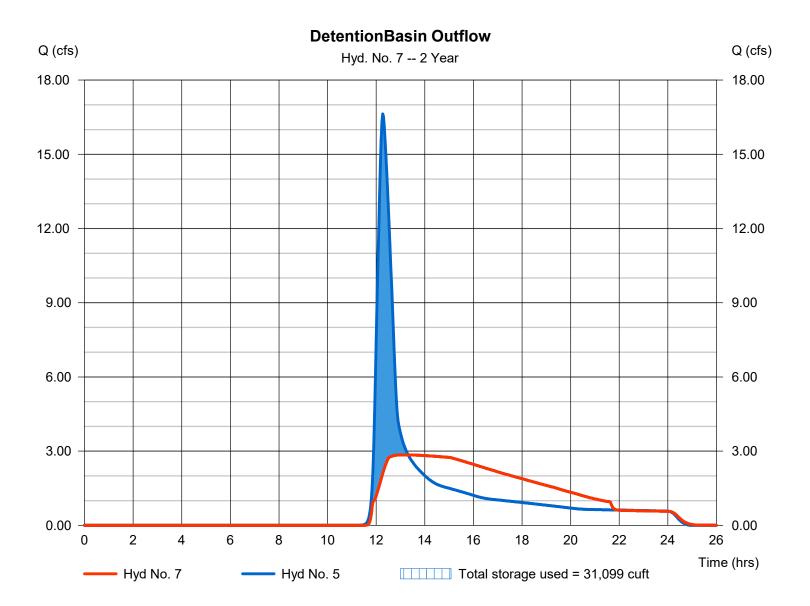


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 6

Postdev Bypass Flow to Dolington Road

Hydrograph type	= SCS Runoff	Peak discharge	= 0.526 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 2,498 cuft
Drainage area	= 1.100 ac	Curve number	= 64
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 24.90 min
Total precip.	= 3.36 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

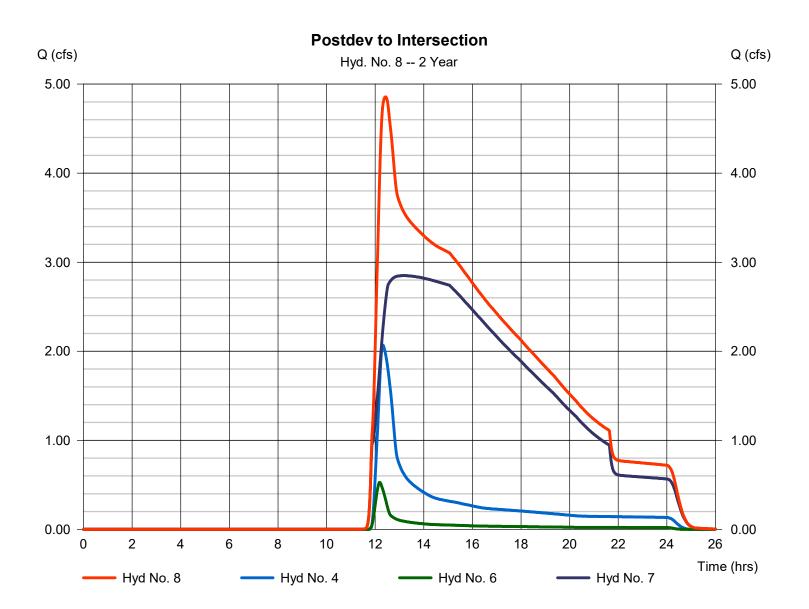

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 7

DetentionBasin Outflow

Hydrograph type Storm frequency Time interval Inflow hyd. No.	 Reservoir 2 yrs 2 min 5 - Postdev to Detention Basi 		= 2.849 cfs = 13.17 hrs = 79,181 cuft = 162.19 ft
Reservoir name	= Basin No. 1	Max. Storage	= 31,099 cuft

Storage Indication method used. Exfiltration extracted from Outflow.



Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

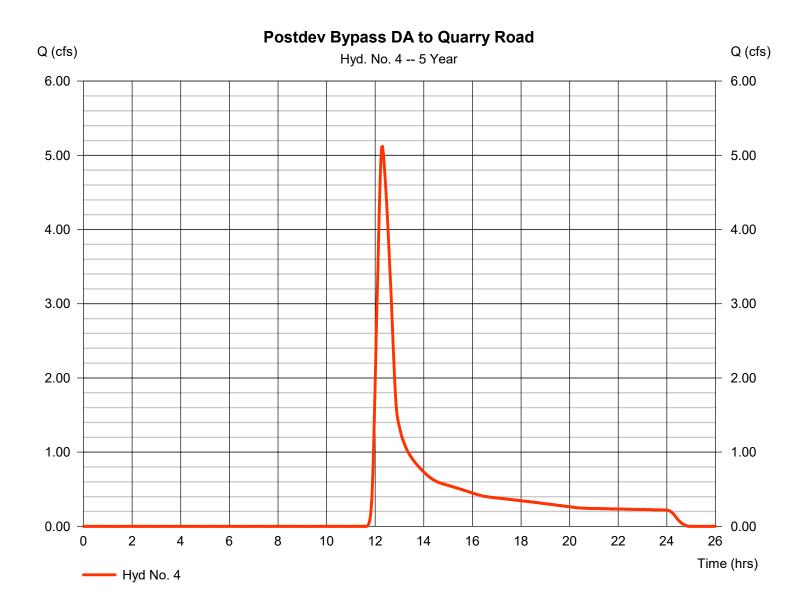
Hyd. No. 8

Postdev to Intersection

Hydrograph type	= Combine	Peak discharge	= 4.858 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.43 hrs
Time interval	= 2 min	Hyd. volume	= 96,430 cuft
Inflow hyds.	= 4, 6, 7	Contrib. drain. area	= 9.800 ac

18

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

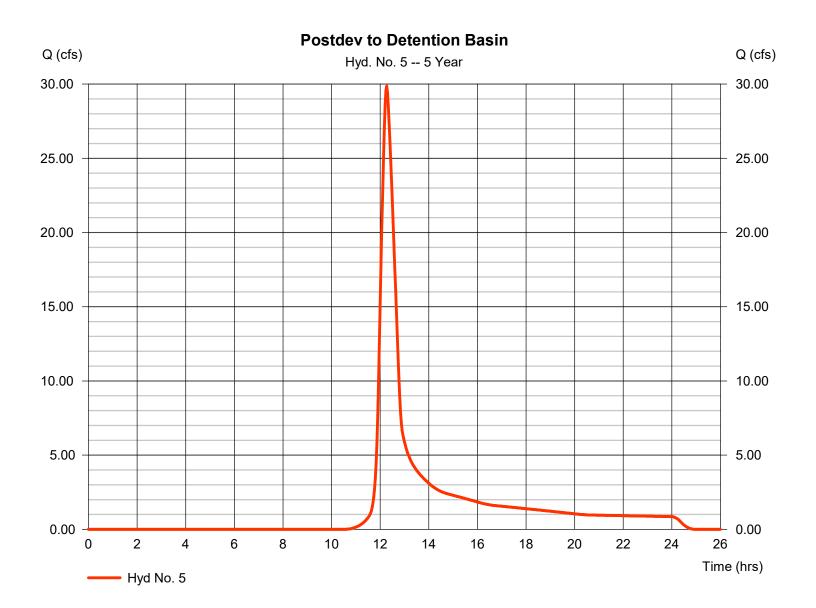

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	10.45	2	734	52,999				Predev DA to Quarry Road
2	SCS Runoff	18.50	2	734	87,644				Predev DA to Dolington Road
3	Combine	28.95	2	734	140,643	1, 2			Predev to Intersection
4	SCS Runoff	5.120	2	738	28,851				Postdev Bypass DA to Quarry Road
5	SCS Runoff	29.87	2	736	142,177				Postdev to Detention Basin
6	SCS Runoff	1.111	2	730	4,549				Postdev Bypass Flow to Dolington Ro
7	Reservoir	7.914	2	770	131,400	5	162.86	56,558	DetentionBasin Outflow
8	Combine	10.17	2	766	164,800	4, 6, 7			Postdev to Intersection
10	Reservoir	1.417	2	1072	107,139	5	164.06	103,042	Sediment Basin
Bas	sin design.gp	w		1	Return F	Period: 5 Ye	ear	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 4

Postdev Bypass DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 5.120 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.30 hrs
Time interval	= 2 min	Hyd. volume	= 28,851 cuft
Drainage area	= 8.700 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.80 min
Total precip.	= 4.32 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

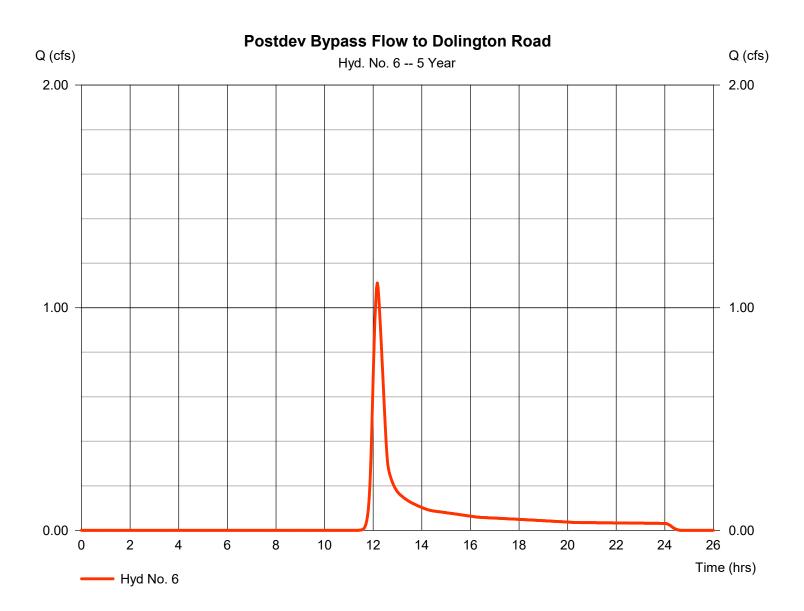


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 5

Postdev to Detention Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 29.87 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 142,177 cuft
Drainage area	= 25.600 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 36.30 min
Total precip.	= 4.32 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

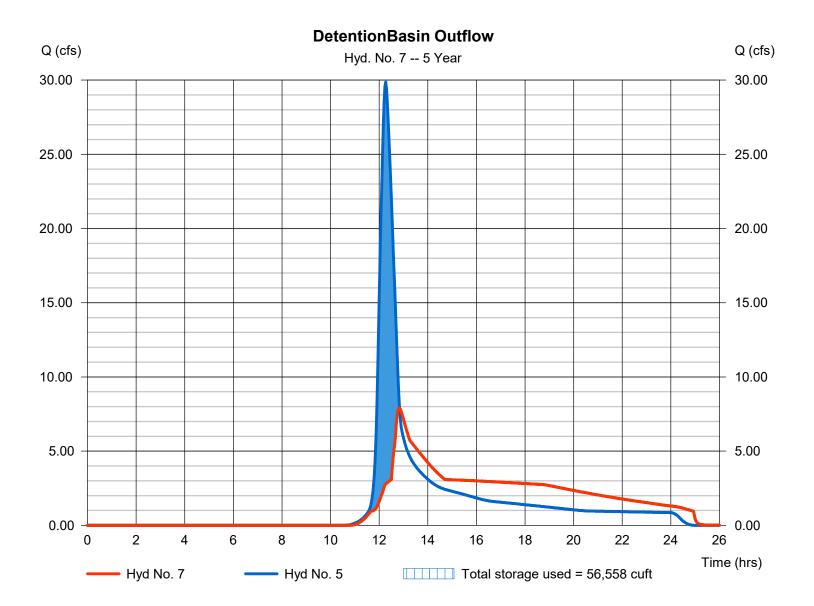


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 6

Postdev Bypass Flow to Dolington Road

Hydrograph type	= SCS Runoff	Peak discharge	= 1.111 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 4,549 cuft
Drainage area	= 1.100 ac	Curve number	= 64
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 24.90 min
Total precip.	= 4.32 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
Tc method Total precip.	= TR55 = 4.32 in	Time of conc. (Tc) Distribution	= 24.90 min = Type II

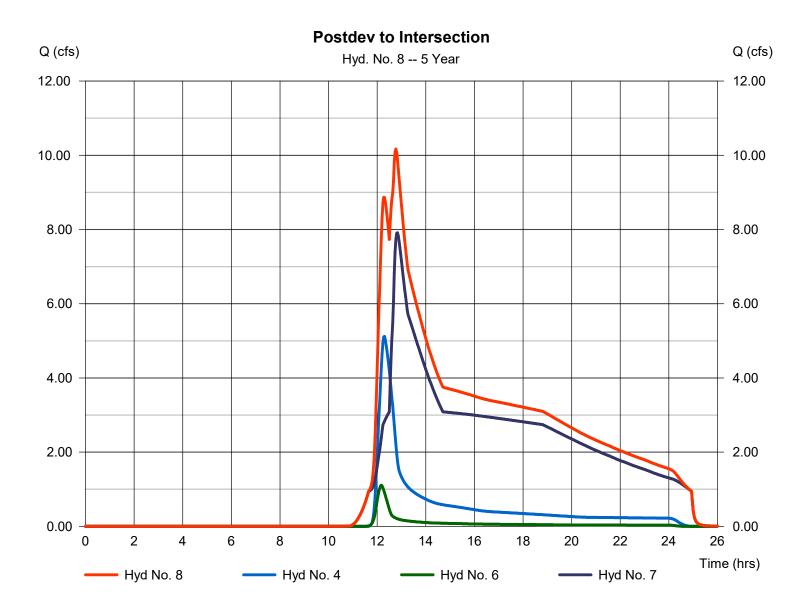

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 7

DetentionBasin Outflow

Hydrograph type	= Reservoir	Peak discharge	= 7.914 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.83 hrs
Time interval	= 2 min	Hyd. volume	= 131,400 cuft
Inflow hyd. No.	= 5 - Postdev to Detention Basi= Basin No. 1	nMax. Elevation	= 162.86 ft
Reservoir name		Max. Storage	= 56,558 cuft

Storage Indication method used. Exfiltration extracted from Outflow.



Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

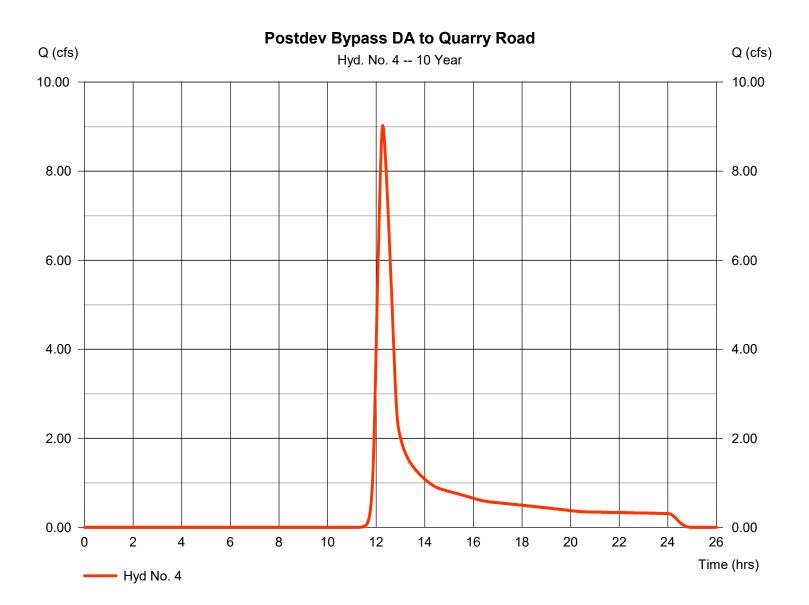
Hyd. No. 8

Postdev to Intersection

Hydrograph type	= Combine	Peak discharge	= 10.17 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.77 hrs
Time interval	= 2 min	Hyd. volume	= 164,800 cuft
Inflow hyds.	= 4, 6, 7	Contrib. drain. area	= 9.800 ac

24

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

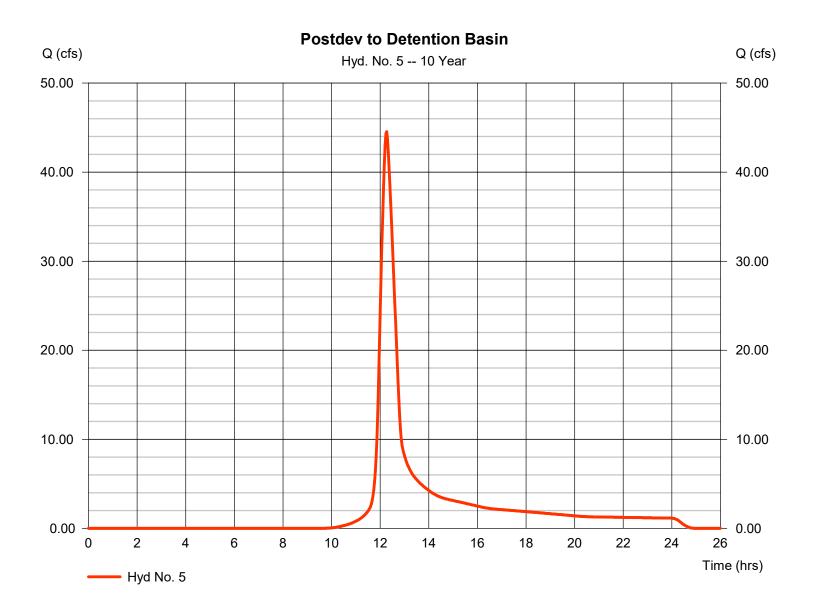

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	18.86	2	732	85,143				Predev DA to Quarry Road
2	SCS Runoff	29.05	2	734	131,325				Predev DA to Dolington Road
3	Combine	47.69	2	734	216,468	1, 2			Predev to Intersection
4	SCS Runoff	9.025	2	736	45,822				Postdev Bypass DA to Quarry Road
5	SCS Runoff	44.54	2	736	206,368				Postdev to Detention Basin
6	SCS Runoff	1.789	2	730	6,938				Postdev Bypass Flow to Dolington Ro
7	Reservoir	23.56	2	758	193,132	5	163.21	69,937	DetentionBasin Outflow
8	Combine	29.71	2	754	245,892	4, 6, 7			Postdev to Intersection
10	Reservoir	5.374	2	812	171,233	5	164.26	115,142	Sediment Basin
Dec	sin design.gp				Return	Period: 10 \	Vear	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 4

Postdev Bypass DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 9.025 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 45,822 cuft
Drainage area	= 8.700 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.80 min
Total precip.	= 5.28 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

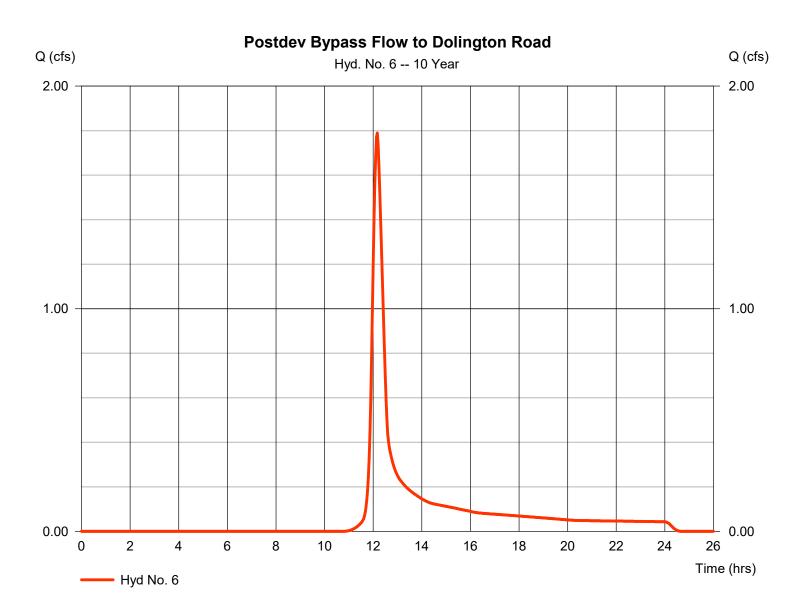

26

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 5

Postdev to Detention Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 44.54 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 206,368 cuft
Drainage area	= 25.600 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 36.30 min
Total precip.	= 5.28 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

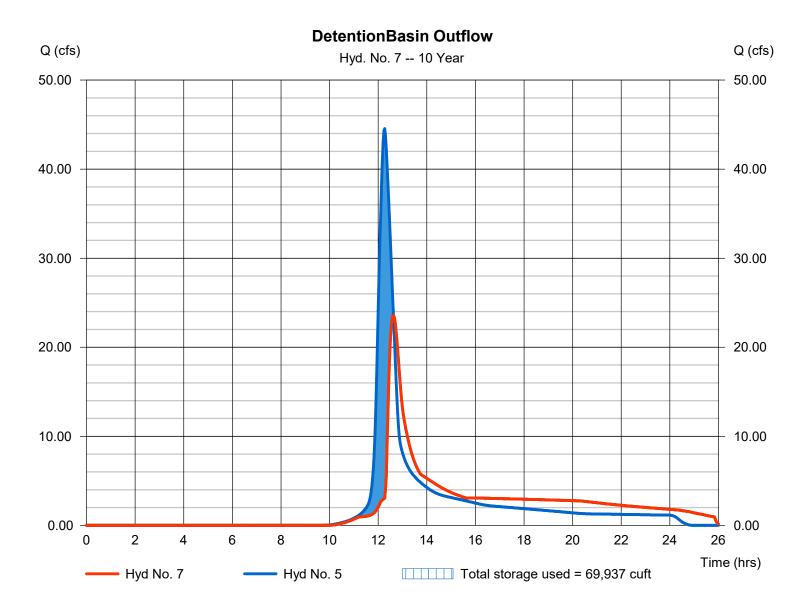


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 6

Postdev Bypass Flow to Dolington Road

Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method	 SCS Runoff 10 yrs 2 min 1.100 ac 0.0 % TR55 	Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc)	 1.789 cfs 12.17 hrs 6,938 cuft 64 0 ft 24.90 min
Drainage area	= 1.100 ac	Curve number	= 64
5	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 24.90 min
Total precip.	= 5.28 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

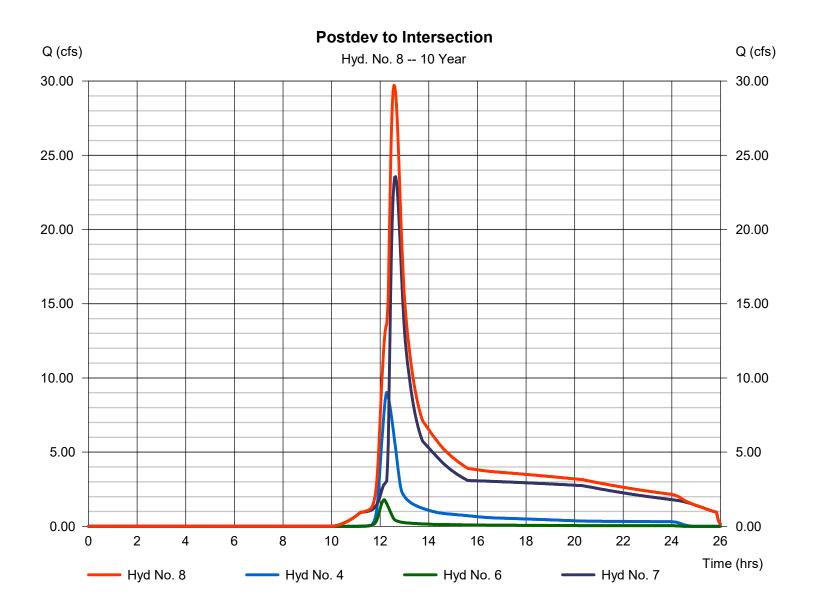

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 7

DetentionBasin Outflow

Hydrograph type Storm frequency Time interval Inflow hyd. No.	 Reservoir 10 yrs 2 min 5 - Postdev to Detention Basic 		= 23.56 cfs = 12.63 hrs = 193,132 cuft = 163.21 ft
Reservoir name	= Basin No. 1	Max. Storage	= 69,937 cuft

Storage Indication method used. Exfiltration extracted from Outflow.


29

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

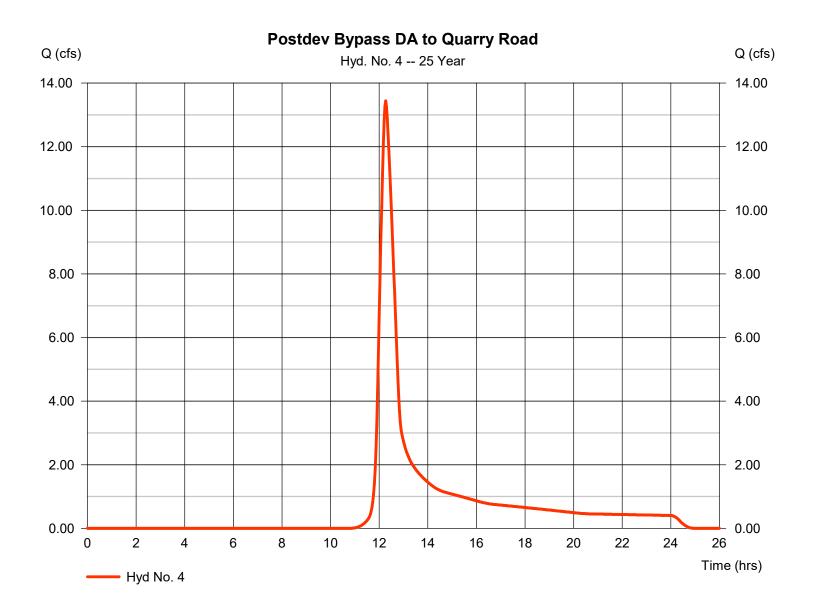
Hyd. No. 8

Postdev to Intersection

Hydrograph type	= Combine	Peak discharge	= 29.71 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.57 hrs
Time interval	= 2 min	Hyd. volume	= 245,892 cuft
Inflow hyds.	= 4, 6, 7	Contrib. drain. area	= 9.800 ac

30

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

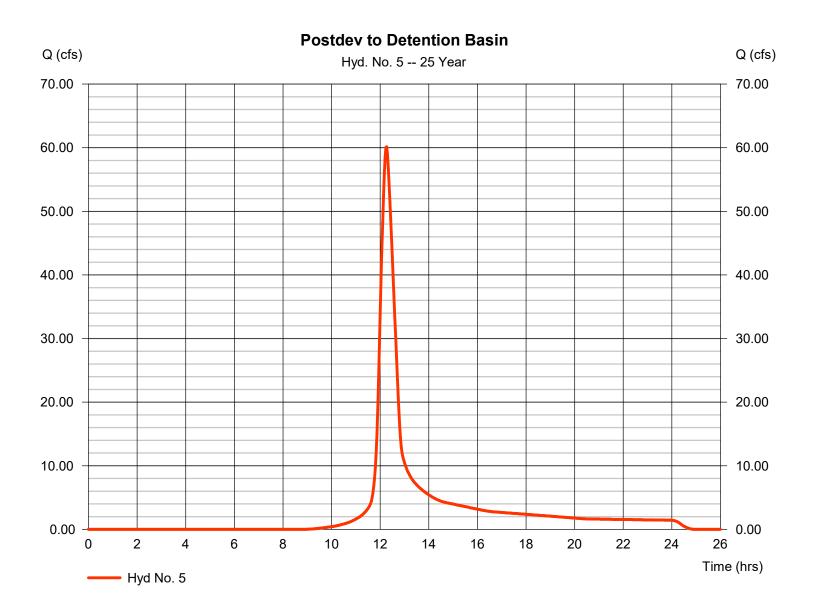

SCS Runoff SCS Runoff Combine SCS Runoff	28.40 40.49	2				(ft)	(cuft)	
Combine	40.49		732	121,583				Predev DA to Quarry Road
		2	734	179,073				Predev DA to Dolington Road
SCS Runoff	68.65	2	732	300,655	1, 2			Predev to Intersection
	13.44	2	736	64,950				Postdev Bypass DA to Quarry Road
SCS Runoff	60.15	2	736	275,325				Postdev to Detention Basin
SCS Runoff	2.531	2	730	9,575				Postdev Bypass Flow to Dolington Ro
Reservoir	37.63	2	754	259,891	5	163.54	82,182	DetentionBasin Outflow
Combine	48.35	2	748	334,416	4, 6, 7			Postdev to Intersection
Reservoir	21.48	2	764	240,116	5	164.55	132,035	Sediment Basin
	Combine Reservoir	Combine 48.35	Combine 48.35 2 Reservoir 21.48 2	Combine 48.35 2 748 Reservoir 21.48 2 764	Combine 48.35 2 748 334,416 Reservoir 21.48 2 764 240,116	Combine 48.35 2 748 334,416 4, 6, 7 Reservoir 21.48 2 764 240,116 5	Combine 48.35 2 748 334,416 4, 6, 7 Reservoir 21.48 2 764 240,116 5 164.55 Image: Servoir 21.48 2 764 240,116 5 164.55 Image: Servoir 21.48 2 764 240,116 5 164.55 Image: Servoir 1mage: Servoir	Combine 48.35 2 748 334.416 4, 6, 7 Reservoir 21.48 2 764 240,116 5 164.55 132,035 Image: servoir 21.48 2 764 240,116 5 164.55 132,035

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 4

Postdev Bypass DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 13.44 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 64,950 cuft
Drainage area	= 8.700 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.80 min
Total precip.	= 6.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

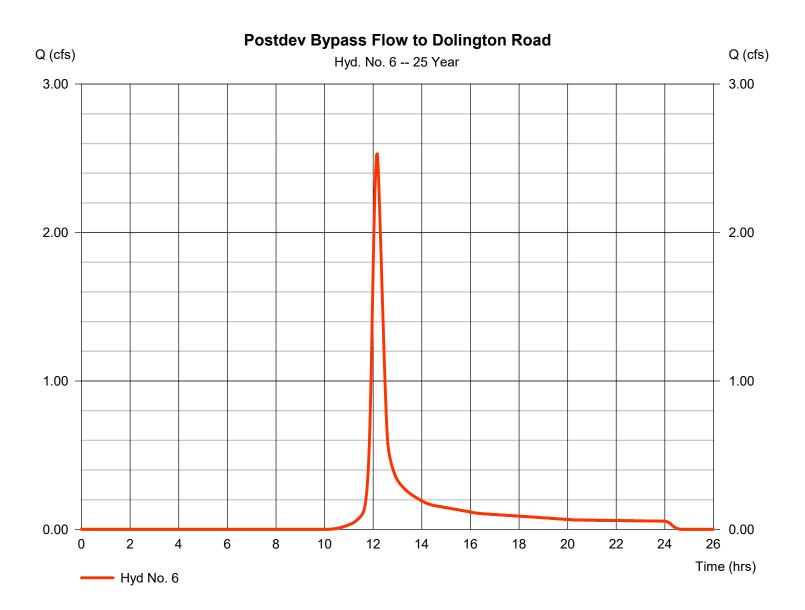


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 5

Postdev to Detention Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 60.15 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 275,325 cuft
Drainage area	= 25.600 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 36.30 min
Total precip.	= 6.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



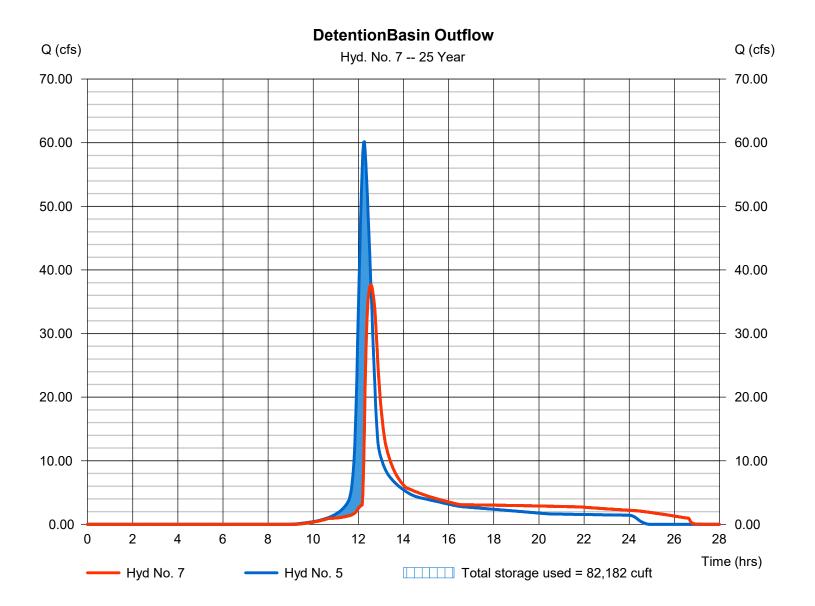
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 6

Postdev Bypass Flow to Dolington Road

Hydrograph type Storm frequency	= SCS Runoff = 25 yrs	Peak discharge Time to peak	= 2.531 cfs = 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 9,575 cuft
Drainage area	= 1.100 ac	Curve number	= 64
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 24.90 min
Total precip.	= 6.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

34

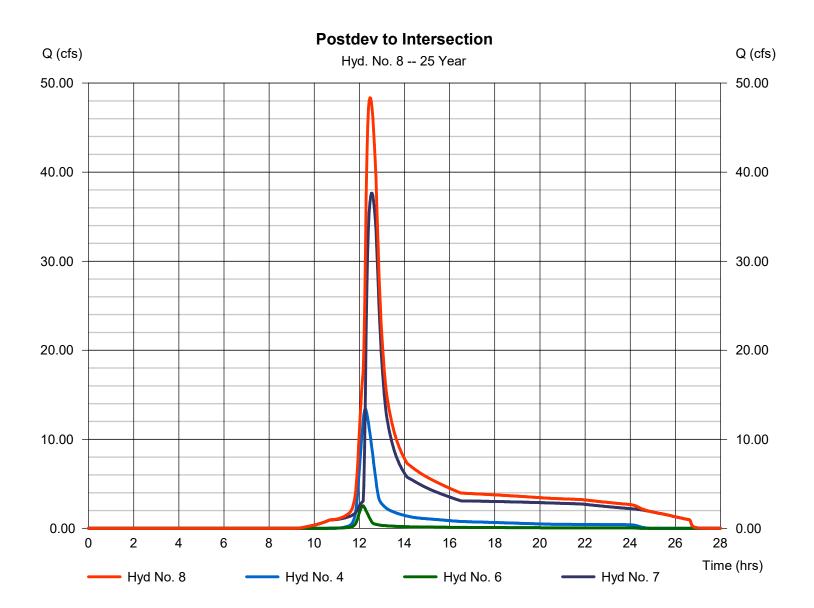

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 7

DetentionBasin Outflow

Hydrograph type	= Reservoir	Peak discharge	= 37.63 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.57 hrs
Time interval	= 2 min	Hyd. volume	= 259,891 cuft
Inflow hyd. No.	= 5 - Postdev to Detention Bas= Basin No. 1	inMax. Elevation	= 163.54 ft
Reservoir name		Max. Storage	= 82,182 cuft

Storage Indication method used. Exfiltration extracted from Outflow.


35

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 8

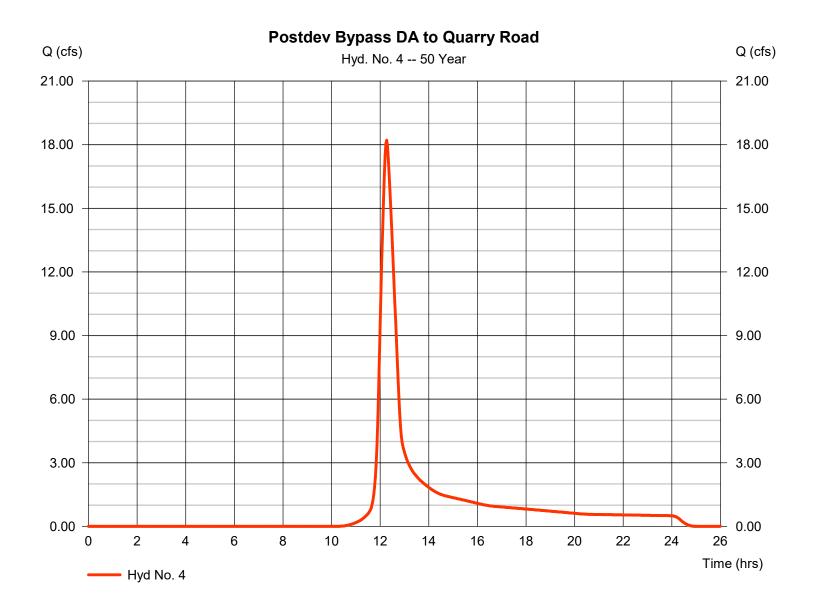
Postdev to Intersection

Hydrograph type	= Combine	Peak discharge	= 48.35 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.47 hrs
Time interval	= 2 min	Hyd. volume	= 334,416 cuft
Inflow hyds.	= 4, 6, 7	Contrib. drain. area	= 9.800 ac

Friday, 07 / 14 / 2017

36

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

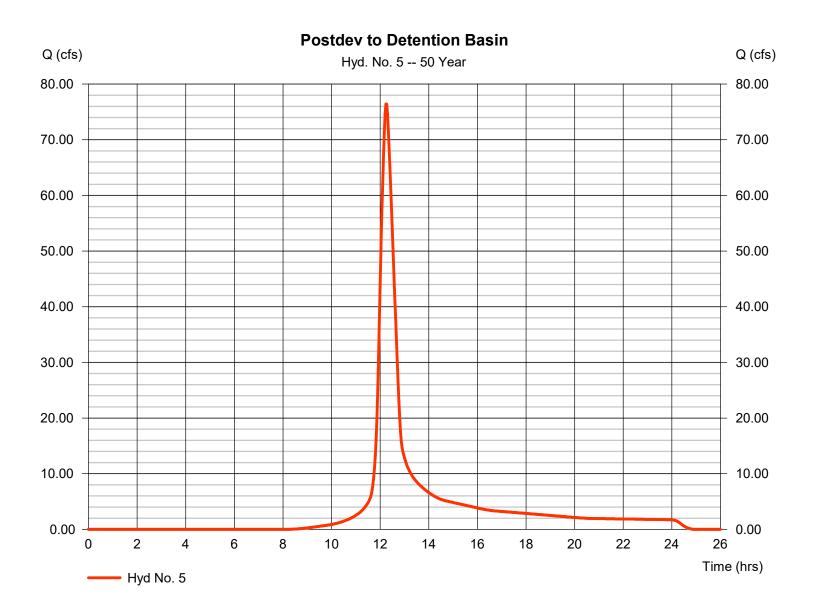

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	38.74	2	732	161,349				Predev DA to Quarry Road
2	SCS Runoff	52.56	2	734	229,853				Predev DA to Dolington Road
3	Combine	91.14	2	732	391,201	1, 2			Predev to Intersection
4	SCS Runoff	18.21	2	736	85,739				Postdev Bypass DA to Quarry Road
5	SCS Runoff	76.42	2	734	347,759				Postdev to Detention Basin
6	SCS Runoff	3.319	2	728	12,398				Postdev Bypass Flow to Dolington Ro
7	Reservoir	48.89	2	752	330,285	5	163.95	97,741	DetentionBasin Outflow
8	Combine	64.02	2	746	428,422	4, 6, 7			Postdev to Intersection
10	Reservoir	49.63	2	752	312,487	5	164.71	140,946	Sediment Basin
Bas	sin design.gp	w			Return F	Period: 50 \	Year	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 4

Postdev Bypass DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 18.21 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 85,739 cuft
Drainage area	= 8.700 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.80 min
Total precip.	= 7.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

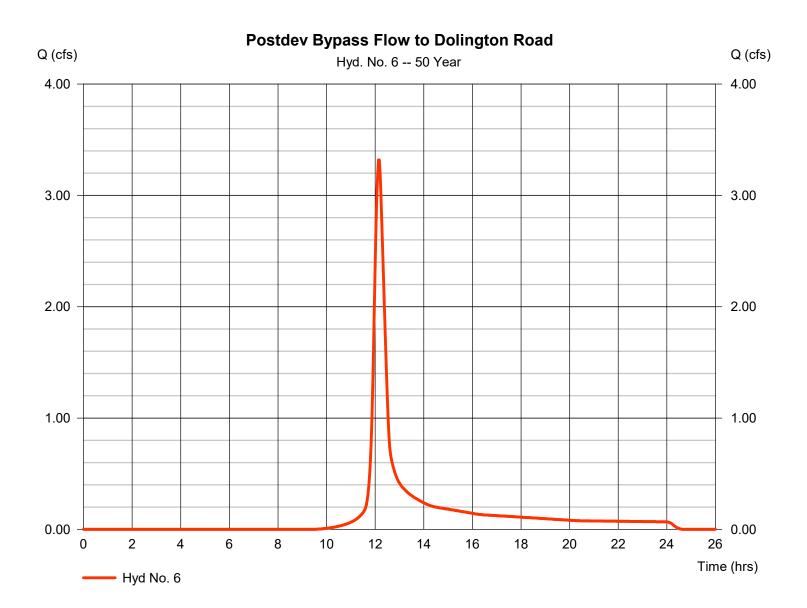


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 5

Postdev to Detention Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 76.42 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.23 hrs
Time interval	= 2 min	Hyd. volume	= 347,759 cuft
Drainage area	= 25.600 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 36.30 min
Total precip.	= 7.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



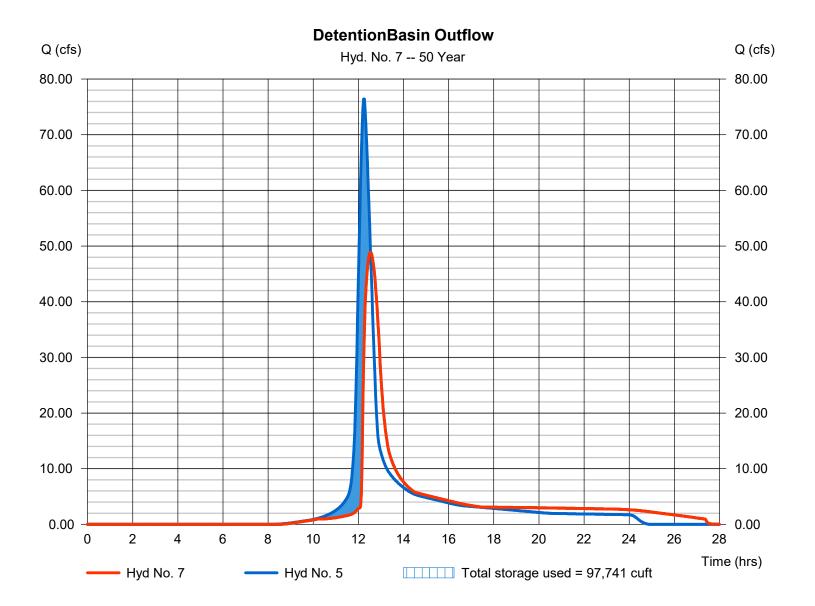
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 6

Postdev Bypass Flow to Dolington Road

Hydrograph type	= SCS Runoff	Peak discharge	= 3.319 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 12,398 cuft
Drainage area	= 1.100 ac	Curve number	= 64
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 24.90 min
Total precip.	= 7.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

40

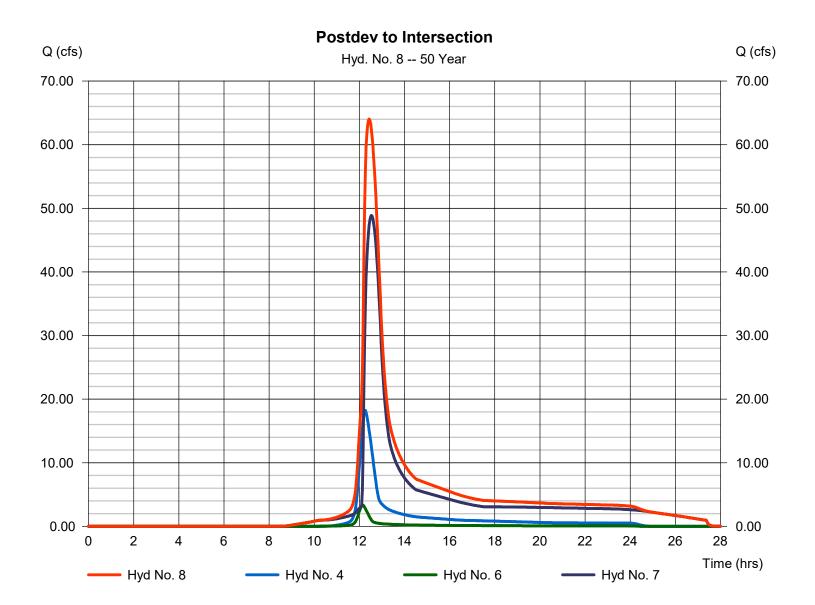

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 7

DetentionBasin Outflow

Hydrograph type	 Reservoir 50 yrs 2 min 5 - Postdev to Detention Basic 	Peak discharge	= 48.89 cfs
Storm frequency		Time to peak	= 12.53 hrs
Time interval		Hyd. volume	= 330,285 cuft
Inflow hyd. No.		inMax. Elevation	= 163.95 ft
Inflow hyd. No.	= 5 - Postdev to Detention Bas= Basin No. 1	INMax. Elevation	= 163.95 ft
Reservoir name		Max. Storage	= 97,741 cuft

Storage Indication method used. Exfiltration extracted from Outflow.



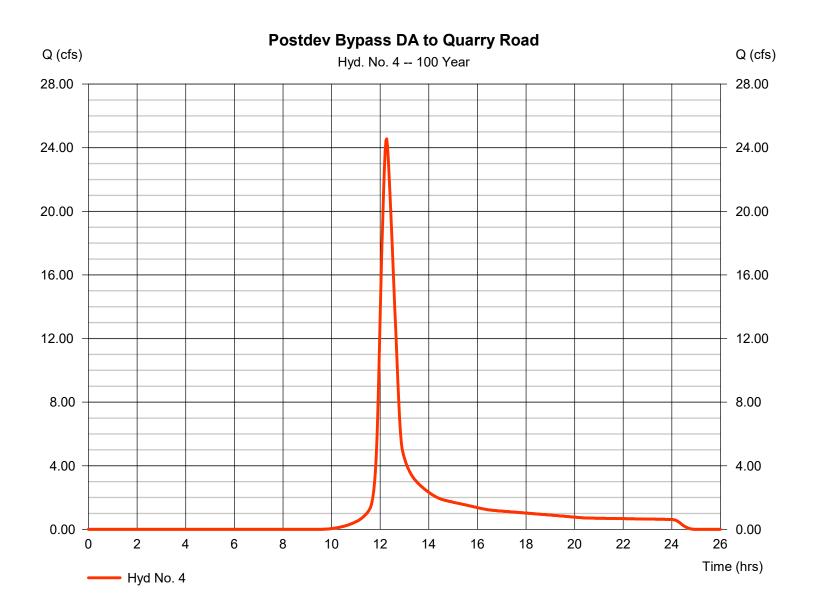
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 8

Postdev to Intersection

Hydrograph type	= Combine	Peak discharge	= 64.02 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.43 hrs
Time interval	= 2 min	Hyd. volume	= 428,422 cuft
Inflow hyds.	= 4, 6, 7	Contrib. drain. area	= 9.800 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

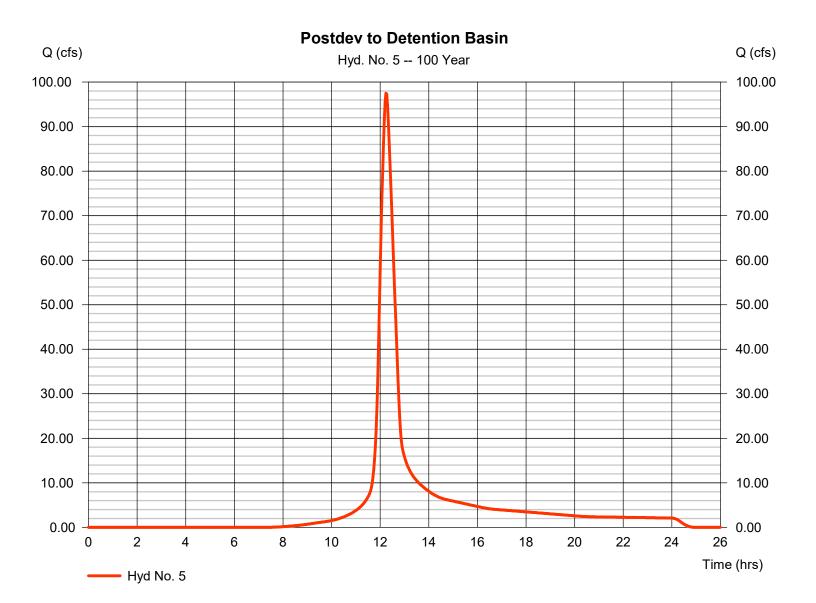

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	52.51	2	732	214,688				Predev DA to Quarry Road
2	SCS Runoff	68.27	2	734	296,529				Predev DA to Dolington Road
3	Combine	120.75	2	732	511,218	1, 2			Predev to Intersection
4	SCS Runoff	24.55	2	736	113,531				Postdev Bypass DA to Quarry Road
5	SCS Runoff	97.50	2	734	441,899				Postdev to Detention Basin
6	SCS Runoff	4.364	2	728	16,126				Postdev Bypass Flow to Dolington Ro
7	Reservoir	56.99	2	754	422,212	5	164.42	124,298	DetentionBasin Outflow
8	Combine	78.49	2	740	551,870	4, 6, 7			Postdev to Intersection
10	Reservoir	81.20	2	744	406,561	5	164.83	148,276	Sediment Basin
Bas	sin design.gp	w			Return F	Period: 100	Year	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 4

Postdev Bypass DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 24.55 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 113,531 cuft
Drainage area	= 8.700 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.80 min
Total precip.	= 8.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

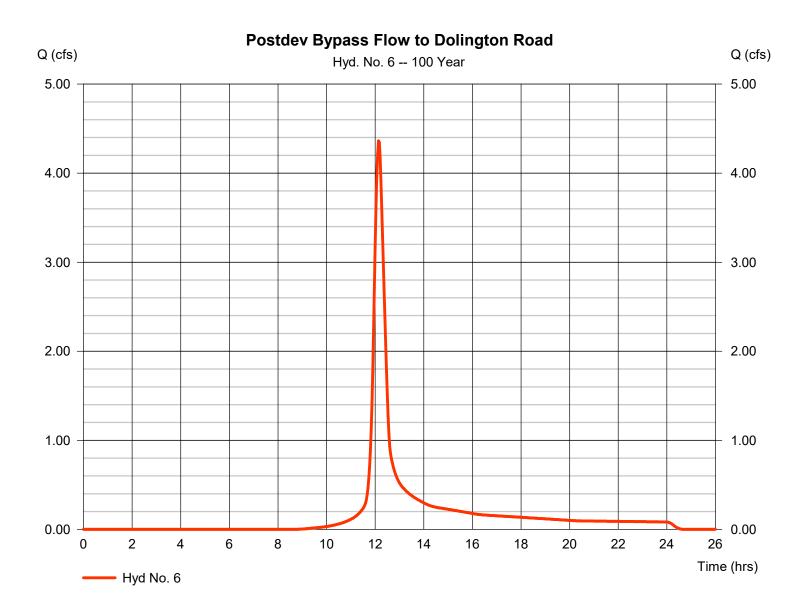


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 5

Postdev to Detention Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 97.50 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.23 hrs
Time interval	= 2 min	Hyd. volume	= 441,899 cuft
Drainage area	= 25.600 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 36.30 min
Total precip.	= 8.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

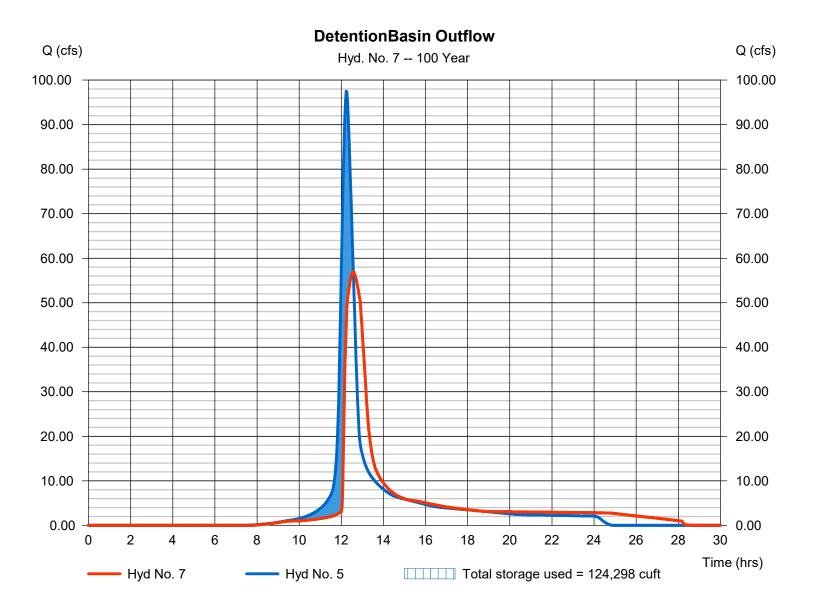


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 6

Postdev Bypass Flow to Dolington Road

Hydrograph type	= SCS Runoff	Peak discharge	= 4.364 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 16,126 cuft
Drainage area	= 1.100 ac	Curve number	= 64
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 24.90 min
Total precip.	= 8.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

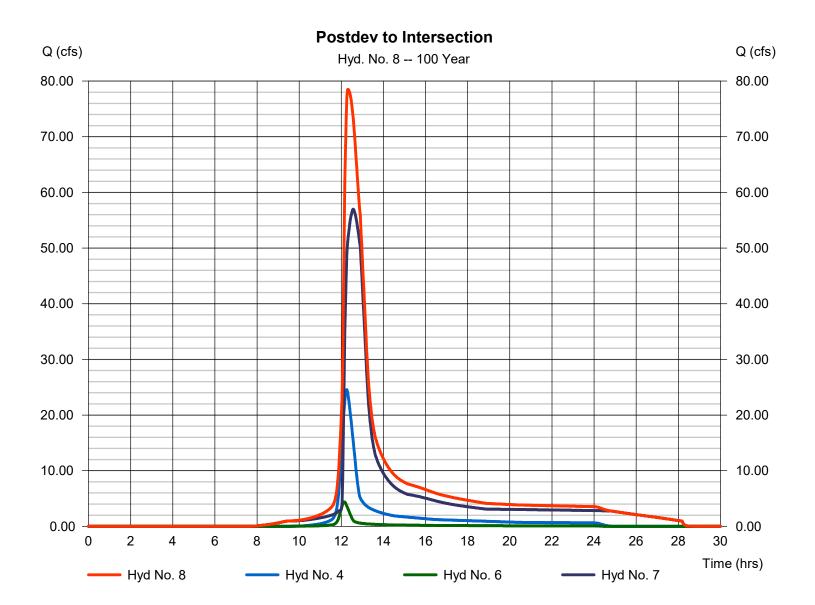

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 7

DetentionBasin Outflow

Storm frequency =	 Reservoir 100 yrs 2 min 5 - Postdev to Detention Basing 	Peak discharge Time to peak Hyd. volume nMax. Elevation	 56.99 cfs 12.57 hrs 422,212 cuft 164.42 ft
5	5 - Postdev to Detention BasinBasin No. 1	nMax. Elevation Max. Storage	= 164.42 ft = 124,298 cuft

Storage Indication method used. Exfiltration extracted from Outflow.


47

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 8

Postdev to Intersection

Hydrograph type	= Combine	Peak discharge	= 78.49 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.33 hrs
Time interval	= 2 min	Hyd. volume	= 551,870 cuft
Inflow hyds.	= 4, 6, 7	Contrib. drain. area	= 9.800 ac

Hydraflow Table of Contents

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Watershed Model Schematic	1
Hydrograph Return Period Recap	2

1 - Year

Summary Report	3
Hydrograph Reports	
Hydrograph No. 4, SCS Runoff, Postdev Bypass DA to Quarry Road	
TR-55 Tc Worksheet	5
Hydrograph No. 5, SCS Runoff, Postdev to Detention Basin	6
TR-55 Tc Worksheet	7
Hydrograph No. 6, SCS Runoff, Postdev Bypass Flow to Dolington Road	8
TR-55 Tc Worksheet	9
Hydrograph No. 7, Reservoir, DetentionBasin Outflow	0
Pond Report - Basin No. 1 1	1
Hydrograph No. 8, Combine, Postdev to Intersection	2

2 - Year

Summary Report	13
Hydrograph Reports	
Hydrograph No. 4, SCS Runoff, Postdev Bypass DA to Quarry Road	
Hydrograph No. 5, SCS Runoff, Postdev to Detention Basin	
Hydrograph No. 6, SCS Runoff, Postdev Bypass Flow to Dolington Road	
Hydrograph No. 7, Reservoir, DetentionBasin Outflow	
Hydrograph No. 8, Combine, Postdev to Intersection	18

5 - Year

Summary Report	19
lydrograph Reports	
Hydrograph No. 4, SCS Runoff, Postdev Bypass DA to Quarry Road	
Hydrograph No. 5, SCS Runoff, Postdev to Detention Basin	21
Hydrograph No. 6, SCS Runoff, Postdev Bypass Flow to Dolington Road	22
Hydrograph No. 7, Reservoir, DetentionBasin Outflow	23
Hydrograph No. 8, Combine, Postdev to Intersection	24

10 - Year

Summary Report	25
Hydrograph Reports	
Hydrograph No. 4, SCS Runoff, Postdev Bypass DA to Quarry Road	
Hydrograph No. 5, SCS Runoff, Postdev to Detention Basin	
Hydrograph No. 6, SCS Runoff, Postdev Bypass Flow to Dolington Road	
Hydrograph No. 7, Reservoir, DetentionBasin Outflow	
Hydrograph No. 8, Combine, Postdev to Intersection	

25 - Year

Summary Report	31
Hydrograph Reports	
Hydrograph No. 4, SCS Runoff, Postdev Bypass DA to Quarry Road	

Hydrograph No. 5, SCS Runoff, Postdev to Detention Basin
Hydrograph No. 6, SCS Runoff, Postdev Bypass Flow to Dolington Road
Hydrograph No. 7, Reservoir, DetentionBasin Outflow
Hydrograph No. 8, Combine, Postdev to Intersection

50 - Year

Summary Report	37
Hydrograph Reports	38
Hydrograph No. 4, SCS Runoff, Postdev Bypass DA to Quarry Road	
Hydrograph No. 5, SCS Runoff, Postdev to Detention Basin	. 39
Hydrograph No. 6, SCS Runoff, Postdev Bypass Flow to Dolington Road	. 40
Hydrograph No. 7, Reservoir, DetentionBasin Outflow	41
Hydrograph No. 8, Combine, Postdev to Intersection	42

100 - Year

43
44
44
45
46
47
48

STORM SEWER INFILTRATION TRENCH DESIGN CALCULATIONS

Infiltration Trench Calculations

1. Infiltration Trench from Inlet #2 to Inlet #3

Length = $\underline{170 \text{ feet}}$, Width = $\underline{45 \text{ feet}}$ Surface Area = $\underline{7,650 \text{ sf}}$ Design Infiltration Rate = $1.52/2 = \underline{0.760''/hr}$ 2 Year Storm Runoff Volume = $\underline{44,345 \text{ cf}}$

- Dewatering Time = <u>44,345 cf</u> = 92 hrs > 72 hrs , use 24 hrs (0.76"/hr)(1 ft/12")(7,650 sf)
- Infiltration Volume = (24 hr)(0.76"/hr)(1ft/12")(7,650 sf) = <u>11,628 cf</u>
- Storage Volume

Stone = 5.0(170 feet)(45 feet)(0.40 Voids Ratio) = <u>15,300 cf</u> $Pipe = <math>.6(3.412 \text{ sf})(170 \text{ ft})\{(.5(0.4+1.9)/2.0\} = <u>184 \text{ cf}</u>$ Total Storage = <u>15,484 cf</u>

• Managed Volume = 11,628 cf + 15,484 cf = <u>27,112 cf</u>

Infiltration Trench Calculations

3. Infiltration Trench from Inlet #18 to Inlet #22

Length = <u>640 feet</u>, Width = <u>10 feet</u> Surface Area = <u>6,400 sf</u> Design Infiltration Rate = <u>2.38"/hr</u> 2 Year Storm Runoff Volume = <u>17,037 cf</u>

- Dewatering Time = <u>17,037 cf</u> = 14 hrs < 72 hrs (2.38"/hr)(1 ft/12")(6,400 sf)
- Managed Volume = Infiltrated Volume = <u>17,037 cf</u>

Worksheet 4. Change in Runoff for 2-YR Storm Event

PROJECT:	Snipes Tract Athletic Fields Infiltration Trench I#2
	12.13 Ac.
2-Year Rainfall:	<u>3.36</u> in.
Total Site Area:	12.13 acres
Protected Site Area:	acres
Managed Area:	12.13 acres

Existing Conditions:

Cover Type/Condition	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Woodland	В		0.00	55	8.18	1.64	0.30	0
Woodland	С		0.00	70	4.29	0.86	0.92	0
Meadow	В		0.00	58	7.24	1.45	0.40	0
Meadow	С		0.00	71	4.08	0.82	0.98	0
Meadow	D		0.00	78	2.82	0.56	1.39	0
Impervious	B/D		0.00	98	0.20	0.04	3.13	0
TOTAL:		0	0.00				7.12	0

Developed Conditions:

Cover Type/Condition	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Lawn	В	251,136	5.77	61	6.39	1.28	0.51	10,697
Lawn	С	77,164	1.77	74	3.51	0.70	1.14	7,358
Woods	В	31,659	0.73	55	8.18	1.64	0.30	791
Woods	С	100,074	2.30	70	4.29	0.86	0.92	7,695
Impervious	B/C	68,320	1.57	98	0.20	0.04	3.13	17,803
TOTAL:		528,353	12.13				6.01	44,345

2-Year Volume Increase (ft³): 44,345

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

1. Runoff (in) = Q = $(P-0.2S)^2 / (P+0.8S)$ where P = 2-Year Rainfall (in) S = (1000/CN)-102. Runoff Volume (CF) = Q x Area x 1/12 Q = Runoff (in) Area = Land Use Area (Sq. ft)

Note: Runoff Volume must be calculated for EACH land use type/condition and HSGI. The use of a weighted CN value for volume calculations is not acceptable.

359,959

Worksheet 4. Change in Runoff for 2-YR Storm Event

PROJECT:	Snipes Tract Athletic Fields Infiltration Trench I#18
	5.24 Ac.
2-Year Rainfall:	3.36 in.
Total Site Area:	5.24 acres
Protected Site Area:	acres
Managed Area:	5.24 acres

Existing Conditions:

Cover Type/Condition	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Woodland	В		0.00	55	8.18	1.64	0.30	0
Woodland	С		0.00	70	4.29	0.86	0.92	0
Meadow	В		0.00	58	7.24	1.45	0.40	0
Meadow	С		0.00	71	4.08	0.82	0.98	0
Meadow	D		0.00	78	2.82	0.56	1.39	0
Impervious	B/D		0.00	98	0.20	0.04	3.13	0
TOTAL:		0	0.00				7.12	0

Developed Conditions:

Cover Type/Condition	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Lawn	В	171,141	3.93	61	6.39	1.28	0.51	7,290
Lawn	С		0.00	74	3.51	0.70	1.14	0
Woods	В	21,673	0.50	55	8.18	1.64	0.30	542
Woods	С		0.00	70	4.29	0.86	0.92	0
Impervious	B/C	35,327	0.81	98	0.20	0.04	3.13	9,205
TOTAL:		228,141	5.24				6.01	17,037

2-Year Volume Increase (ft³):

17,037

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

1. Runoff (in) = Q = $(P-0.2S)^2 / (P+0.8S)$ where

P = 2-Year Rainfall (in)

S = (1000/CN)-10

2. Runoff Volume (CF) = Q x Area x 1/12

Q = Runoff (in)

Area = Land Use Area (Sq. ft)

Note: Runoff Volume must be calculated for EACH land use type/condition and HSGI. The use of a weighted CN value for volume calculations is not acceptable.

192,814

PROJECT : SNIPES TRACT

PROJECT No. 1677054L

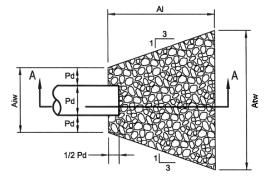
DATE : 06/07/17

STORM PIPE COMPUTATION SHEET

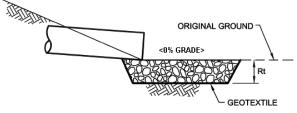
CALC. BY: MES

SHEET: 1 OF 1

R	un		Drai	Drainage Area Runoff					Pipe Data					Profile Data					
			Α			Time of	Ι		Cum.	Pipe	Pipe		Pipe	V	L		TG/Rim	Invert	Invert
Locaton	From	То	Area	С	CA	Conc.	Inten.	Q	Q	Size	Slope	n	Cap.	Vel.	Length	Fall	Elev.(up)	Up	Down
			(acres)			(min.)	(in.)	(cfs.)	(cfs)	(in.)	(ft/ft.)		(cfs.)	(ft/sec.)	(ft.)	(ft.)	(ft.)	(ft.)	(ft.)
Inlet	23	22	1.391	0.21	0.29	5.00	8.40	2.5	2.5	18	0.0051	0.011	8.9	5.0	35	0.18	186.50	183.85	183.67
Inlet	22	20	0.126	0.43	0.05	5.00	8.40	0.5	2.9	18	0.0100	0.011	12.4	7.0	309	3.10	187.50	183.50	180.40
Inlet	21	20	1.149	0.16	0.18	5.00	8.40	1.5	1.5	18	0.0061	0.011	9.6		66	0.40	181.90	178.90	178.50
Inlet	20	18	0.813	0.43	0.35	5.00	8.40	2.9	7.4	18	0.0099	0.011	12.3	7.0	313	3.10	183.15	177.00	173.90
Inlet	19	18	1.008	0.15	0.15	5.00	8.40	1.3	1.3	18	0.0050	0.011	8.7	5.0	70	0.35	177.00	174.25	173.90
Inlet	18	17	0.750	0.50	0.38	5.00	8.40	3.2	11.8	18	0.0095	0.011	12.0		95	0.90	176.70	173.70	172.80
Inlet	17	16	0.299	0.25	0.07	5.00	8.40	0.6	12.4	18	0.0163	0.011	15.8		202	3.30	176.70	172.60	169.30
Inlet	16	1	0.507	0.47	0.24	5.00	8.40	2.0	14.4	18	0.0171	0.011	16.2	9.2	35	0.60	172.50	169.10	168.50
Inlet	15	14	2.972	0.23	0.68	5.00	8.40	5.7	5.7	18	0.0087	0.011	11.5	6.5	264	2.30	186.60	183.60	181.30
Inlet	14	13	0.433	0.25	0.11	5.00	8.40	0.9	6.7	18	0.0661	0.011	31.8	18.0	28	1.85	185.50	181.10	179.25
Inlet	13	12	1.711	0.26	0.44	5.00	8.40	3.7	10.4	18	0.0089	0.011	11.7	6.6	263	2.35	182.00	179.05	176.70
Inlet	12	11	0.435	0.32	0.14	5.00	8.40	1.2	11.6	18	0.0321	0.011	22.2	12.5	39	1.25	181.00	176.00	174.75
Inlet	11	6	1.323	0.23	0.30	5.00	8.40	2.6	14.1	24	0.0060	0.011	20.6	6.6	251	1.50	177.50	174.25	172.75
Inlet	10	9	2.962	0.16	0.47	5.00	8.40	4.0	4.0	18	0.0050	0.011	8.7	5.0	87	0.45	177.50	174.90	174.45
Inlet	9	8	0.645	0.14	0.09	5.00	8.40	0.8	4.7	18	0.0050	0.011	8.7	5.0	100	0.50	177.94	174.25	173.75
Inlet	8	7	0.432	0.48	0.21	5.00	8.40	1.7	6.5	18	0.0050	0.011	8.7	5.0	62	0.31	177.51	173.55	173.24
Inlet	7	6	0.034	0.25	0.01	5.00	8.40	0.1	6.6	18	0.0051	0.011	8.8	5.0	57	0.29	176.67	173.04	172.75
Inlet	6	5	0.231	0.27	0.06	5.00	8.40	0.5	21.2	24	0.0063	0.011	21.1	6.7	78	0.49	176.97	172.75	172.26
Inlet	5	4	0.018	0.74	0.01	5.00	8.40	0.1	21.3	24	0.0064	0.011	21.4	6.8	103	0.66		172.06	171.40
Inlet	4	3	0.089	0.27	0.02	5.00	8.40	0.2	21.5	24	0.0066	0.011	21.7	6.9	100	0.66	175.50	171.20	170.54
Inlet*	3	2	0.131	0.33	0.04	5.00	8.40	0.4	21.9	24	0.0067	0.011	21.9	-	221	1.49	175.25	170.54	169.05
Inlet	2	1	0.712	0.58	0.41	5.00	8.40	3.5	25.3	24	0.0225	0.011	40.1	12.7	51	1.15	172.60	169.15	168.00
Inlet	1	EW1	0.224	0.24	0.05	5.00	8.40	0.5	40.2	24	0.0463	0.011	57.4	18.3	54	2.50	172.50	167.50	165.00
Inlet	28	27	1.423	0.23	0.33	5.00	8.40	2.7	2.7	18	0.0144	0.011	14.9	-	260	3.75	175.50	172.75	169.00
Inlet*	27	26	2.273	0.18	0.41	5.00	8.40	3.4	6.2	18	0.0103	0.011	12.6	7.1	150	1.55	171.80	168.80	167.25
Inlet*	26	EW2	0.770	0.28	0.22	5.00	8.40	1.8	8.0	18	0.0090	0.011	11.7	6.6	50	0.45	170.00	167.05	166.60
Inlet	25	24	0.130	0.69	0.09	5.00	8.40	0.8	0.8	18	0.0194	0.011	17.2	9.8	35	0.68	164.00	161.00	160.32


* Infiltration Trench

APPENDIX E:


EROSION AND SEDIMENT CONTROL CALCULATIONS

STANDARD E&S WORKSHEET # 20 Riprap Apron Outlet Protection

	Snipes Tract Athletic Fields				
LOCATION: Dolington Road and Quarry Road, Lower Makefield Township, Bucks County, PA					
PREPARED BY:	Maryellen Saylor, P.E.	DATE:	November 18, 2016, Revised June 7, 2017		
CHECKED BY:	Mark Eisold, P.E.	DATE:	November 18, 2016, Revised June 7, 2017		

PLAN VIEW

SECTION A - A

NO.	PIPE DIA. Do (in.)	TAIL WATER COND. (Max or Min)	MAN. "n" FOR PIPE	PIPE SLOPE (FT/FT)	Q (CFS)	V* (FPS)	RIPRAP SIZE	Rt (in)	AI (ft)	Aiw (ft)	Atw (ft)
EW #1	24"	Min.	0.011	0.0463	40.2	12.8	R-6	36"	22	6	22
EW #2	18"	Min.	0.011	0.0100	12.7	7.0	R-4	18"	12	5	13
EW #3	36"	Min.	0.012	0.0289	57.0	8.1	R-5	27"	20	9	24

*:The anticipated velocity (V) should not exceed the maximum permissible shown in Table 6.6 for the proposed riprap protection. Adjust for less than full pipe flow. Use Manning's equation to calculate velocity for pipe slopes ≥ 0.05 ft/ft.

STANDARD E&S WORKSHEET # 22 PLAN PREPARER RECORD OF TRAINING AND EXPERIENCE IN EROSION AND SEDIMENT POLLUTION CONTROL METHODS AND TECHNIQUES

NAME OF PLAN PREPARER: Maryellen Saylor, P.E.

FORMAL EDUCATION:

Name of College or Technical Institute: The Pennsylvania State University

Curriculum or Program: College of Engineering, Civil						
Dates of Attendance:	From: August 1979	To: August 1983				
Degree Received Bachelo	r of Science Civil Engineering					

OTHER TRAINING:

Name of Training:	Changes to the PADEP Chapter 102 Regulations for the Reg'd Community	NPDES.MS4Permit Renewal.NPDES Workshop
Presented By:	PADEP	PADEP
Date:	November 2, 2012	January 5. 2012. May 24. 2016

EMPLOYMENT HISTORY:

Current Employer:	Boucher & James, Inc.
Telephone:	(215) 345-9400

Former Employer: Pickering, Corts	Pickering, Corts & Summerson, Inc.		
Telephone: (215) 968-9300)		

RECENT E&S PLANS PREPARED:

Name of Project:	Delancey Court	Giant Food Store	Samost Ballfields
County:	Bucks	Bucks	Bucks
Municipality:	Newtown Township	Middletown Township	Lower Makefield Township
Permit Number:			
Approving Agency:	PADEP, BCCD	BCCD	BCCD

STANDARD E&S WORKSHEET # 12 Sediment Basin Capacity Requirements

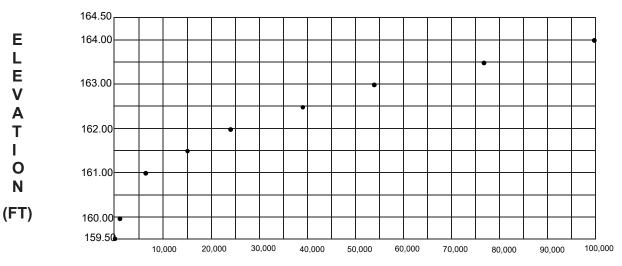
PROJECT NAME: Snipes Tract Athletic Field	
LOCATION: Dolington Road and Quarry Road, Lower Makefield Town	nship, Bucks County, PA
PREPARED BY: Maryellen Saylor, P.E.	DATE: December 6, 2016, Revised July 17, 2017
CHECKED BY: Mark W. Eisold, P.E.	DATE: December 6, 2016, Revised July 17, 2017

BASIN NUMBER		1]
PERMANENT OR TEMPORARY BASIN?	(P or T)	P	
SPECIAL PROTECTION WATERSHED?	/	P N	
Karst soils?	(YES OR NO)		
	(YES OR NO)	N	
(A) MAXIMUM TOTAL DRAINAGE AREA		25.6	
IS DRAINAGE AREA (A) MORE THAN 10% LARGER TH		N	
	(YES OR NO)	N	
(A1) DISTURBED ACRES IN DRAINAGE AREA (AC)		20.0	
(I) INITIAL REQ'D DEWATERING ZONE (5,000 X A)	(CF)	100,000	
(T) REDUCTION FOR TOP DEWATERING (-700 X A)	(CF)	14,000	
(P) REDUCTION FOR PERMANENT POOL (-700 X A)	(CF)		
(L) REDUCTION FOR 4:1 FLOW LENGTH:WIDTH (-350			
(D) REDUCTION FOR 4 TO 7 DAY DEWATERING (- 350		7,000	
(Sv) REQUIRED DEWATERING ZONE [I - (T+P+L+D)] ¹	(CF)	79,000	
(Sd) REQUIRED SEDIMENT STORAGE VOLUME (1000	X A ₁) (CF)	20,000	
(St) TOTAL REQUIRED STORAGE VOLUME (Sv + Sd)	(CF)	99,000	
TOTAL STORAGE VOLUME PROVIDED (@ ELEV 3) ²	(CF)	99,811	
DEWATERING TIME FOR DEWATERING ZONE	(DAYS)	4	
REQUIRED DISCHARGE CAPACITY (2 X A)	(CFS) ³	40	
PRINCIPAL SPILLWAY TYPE (PERFORATED RISER, SI	KIMMER, etc.)	Outlet Structure Grate	
PEAK FLOW FROM 10 YR/24 HR STORM FOR DRAINA		44.5	
PRINCIPAL SPILLWAY CAPACITY (@ ELEV 5)	(CFS) ⁴	19.7 *	
EMERGENCY SPILLWAY CAPACITY (@ ELEV 5)	(CFS) ⁴	25.0 *	
TOTAL BASIN DISCHARGE CAPACITY (@ ELEV 5)	(CFS)	44.7	
EMERGENCY SPILLWAY PROTECTIVE LINING ⁵	· /	Erosion Control Line	er
	(YES OR NO) ⁶	Yes (swale)	
PEAK FLOW FROM A 100 YR/24 HR STORM FOR DRG.		97.5	

- 1 The minimum dewatering zone capacity for sediment basins is (3,600 X A). No reduction is permitted in Special Protection (HQ and EV) Watersheds.
- 2 Total Storage Volume provided at riser crest.
- 3 Or provide calculations to show peak flow from 25 yr./24 hr. storm for area (A) is routed through the basin. *Principal Spillway
- 4 Provide supporting computations. $Q = 2.8(164.70-164.00)(12)^{1.5} = 19.7$ cfs $Q = 2.8(100)(164.70-164.50)^{1.5} = 25.0$ cfs
- 5 If grass lining is proposed, spillway should be constructed in original ground unless a suitable TRM lining is used. Wherever a TRM is used, riprap should be placed at the bottom of the embankment to prevent scour.
- 6 If no, and basin is permanent or drainage area is more than 10% larger than pre-construction, provide supporting calculations to show accelerated erosion will not result from the proposed discharge. For discharges increasing volume or rate of flow onto a neighboring property prior to entering a surface water, an easement should be obtained prior to plan submittal.

STANDARD E&S WORKSHEET # 13 Sediment Basin Dimensions and Elevations

PROJECT NAME: Snipes Tract Athletic Fields			
LOCATION: Dolington Road and Quarry Road, Lower Makefield Towns			
PREPARED BY: <u>Maryellen Saylor, P.E.</u>	DATE: December 6		
CHECKED BY: Mark W. Eisold, P.E.	DATE: December 6	6, 2016, Revised	d July 17, 2017
Principal Spillway 3 164.0 Top of Sediment Storage Zone Zone Elev. 162.10 2 Inv Elev. 159.50 7 45 LF $36" RCP$ @ 2.89% Lb = 45 LF	Ži ,	+ Z2 = 5 MI & Z2 = 2 M	IN.
	(ET)	150.00	
1. DISCHARGE PIPE ELEVATION	(FT)	158.00	
2. ELEVATION AT TOP OF SEDIMENT STORAGE ZONE (MIN. 1.0' ABOVE ELEVATION 7)	(@ Sd) (FT)	162.10	
3. ELEVATION AT TOP OF DEWATERING ZONE (St)	(FT)	102.10	
(CREST OF PRINCIPAL SPILLWAY)	(' ')	164.00	
4. EMERGENCY SPILLWAY CREST ELEVATION	(FT)		
(MIN. 0.5' ABOVE ELEVATION 3)	()	164.50	
5. 2 CFS/ACRE OR 25-YR/24-HR FLOW ELEVATION	(FT)	164.70	
6. TOP OF EMBANKMENT ELEVATION	(FT)		
(MIN. 24" ABOVE ELEVATION 5		166.00	
OR 12" WITH ROUTED 100-YR/24-HR STORM)			
7. BASIN BOTTOM ELEVATION	(FT)	159.50	
AVERAGE BOTTOM WIDTH	(FT)	20	
AVERAGE BOTTOM LENGTH	(FT)	40	
(SA _{min}) REQUIRED SURFACE AREA AT ELEVATION 2	(SQ. FT.)	1,206	
SURFACE AREA PROVIDED AT ELEVATION 2	(SQ. FT.)	25,500	
AVERAGE BASIN WIDTH (W) AT ELEVATION 3	(FT)	180	
FLOW LENGTH (L) AT ELEVATION 3	(FT)	400	
FLOW LENGTH: WIDTH RATIO AT ELEVATION 3	(L/W)	2	
SILT CURTAIN OR FOREBAY? (IF YES, INDICATE WHIC	/	No	
EMBANKMENT TOP WIDTH	(FT, 8' MIN.)	10	
EMBANKMENT SOIL TYPE(S)		PnB	
KEY TRENCH DEPTH	(FT, 2' MIN.)	2	
KEY TRENCH WIDTH	(FT, 4' MIN.)	8	
RISER DIAMETER/TYPE	(15" MIN.)	24 "x 48" Type	M Inlet
BARREL DIAMETER/TYPE	(12" MIN.)	36"	
Lb (BARREL LENGTH)	(FT)	45	
EMERGENCY SPILLWAY WIDTH	(FT)	100	
EMERGENCY SPILLWAY SIDE SLOPES	(H:V)	4:1	
EMERGENCY SPILLWAY DEPTH	(FT)	1.5	


For irregular shaped traps, provide stage storage data

STANDARD E&S WORKSHEET # 14 Sediment Basin/Sediment Trap Storage Data

PROJECT NAME: Snipes Tr	ract Athletic Fields
LOCATION: Dolington Road a	and Quarry Road, Lower Makefield Township, Bucks County, PA
PREPARED BY: Maryellen S	aylor, P.E. DATE: December 6, 2016, Revised July 17, 2017
CHECKED BY: Mark Eisold	I, P.E. DATE: December 6, 2016, Revised July 17, 2017

WATER SURFACE		AVERAGE AREA (SQ.	DIFFERENCE	STORAGE VOLUM	E (CUBIC FEET)
ELEVATION (FEET)	LEVATION AREA (FEET) (SQ. FT.)		IN ELEVATION (FEET)	INCREMENTAL	TOTAL
159.5	0	772	0.5	386	0
160.0	1,543				386
161.0	13,538	5,774	1.0	5,774	6,160
162.0	22,000	17,769	1.0	17,769	23,929
	,	29,970	1.0	29,970	· · ·
163.0	37,941	45,912	1.0	45,912	53,899
164.0	53,882	56,018	1.0	56,018	99,811
165.0	58,155	-			155,829
166.0	62,428	60,292	1.0	60,292	216,121

STAGE STORAGE CURVE

STORAGE VOLUME (CF)

NOTE: Show Elevation 2 and Elevation 3 in above table as well as on the Stage Storage Curve.

STANDARD E&S WORKSHEET # 15 Sediment Basin/Sediment Trap Dewatering Discharge Data

PROJECT NAME: <u>Snipes Tract Athletic Fields</u>	
LOCATION: _ Dolington Road and Quarry Road, Lower Makefield	Township, Bucks County, PA
PREPARED BY: Maryellen Saylor, P.E.	DATE: December 6, 2016, Revised July 17, 2017
CHECKED BY: Mark W. Eisold, P.E.	DATE: December 6, 2016, Revised July 17, 2017

PERFORATION DISCHARGE (TOP OF RISER TO SEDIMENT CLEAN-OUT ELEVATION)

		RIS	SER PE					ATES			
WATER	ROW 1	ROW ELEVATION ² ROW 1 ROW 2 ROW 3 ROW 4 ROW 5 ROW 6 ROW 7 ROW 8 ROW 9									
SURFACE ELEVATION ¹										TOTAL DISCHARGE (CFS) ³	
Elevation 3											
164.00	0.36	0.28								0.64	
163.00	0.25	0.10								0.35	
162.85	0.23	0								0.23	
162.10	0	0								0.0	

- 1. From E&S Worksheet #14: Top elevation is Top of Dewatering Zone (Elevation 3 on E&S Worksheet #13), and bottom elevation is Top of Sediment Storage Zone (Elevation 2 on E&S Worksheet #13).
- All perforations should be the same size. One-inch diameter perforations are preferred. Specify size of perforations <u>1</u> inch diameter. Each orifice row should have approximately the same number of perforations and the orifice rows should be equally spaced vertically. Specify the number of perforations in each orifice row <u>9</u>.
- 3. Insert value into column 4 of Standard E&S Worksheet #16

NOTE: Where skimmers are used, Figure 7.2, with basin dewatering volume and skimmer orifice size plotted (or calculations as per Faircloth's handbook), should be submitted instead of Standard E&S Worksheets #15 and #16.

STANDARD E&S WORKSHEET # 16 Sediment Basin Dewatering Time Data

PROJECT NAME	Snipes Tract Athletic Fields	
LOCATION: Doli	ngton Road and Quarry Road, Lower Makefield Towr	nship, Bucks County, PA
PREPARED BY:	Maryellen Saylor, P.E.	DATE: December 6, 2016, Revised July 17, 2017
CHECKED BY:	Mark W. Eisold, P.E.	DATE: December 6, 2016, Revised July 17, 2017

WATER SURFACE ELEVATION (FT) ¹	STORAGE VOLUME (CU. FT.) ²	INCREMENTAL STORAGE VOLUME (CU. FT.)	DISCHARGE (CFS) ³	AVERAGE DISCHARGE (CFS)	TIME (HRS)	ACCUMULATED TIME (HRS)
164.0	99,811		0.58			29.0
163.0	53,899	45,912	0.31	0.44	29.0	34.0
103.0		4,495		0.25	5.0	
162.85	49,404	23,904	0.20	0.10	66.4	100.4
162.10	25,500		0			
				-		
				_		-
				-		
				-		
		 		1		
		J				

- 1. From E&S Worksheet #15, first column
- 2. From E&S Worksheet #14, fifth column
- 3. From E&S Worksheet #15, last column
- NOTE: Calculate dewatering time from top of Dewatering Zone (Elevation 3, top of riser) to top of Sediment Storage Zone (Elevation 2).

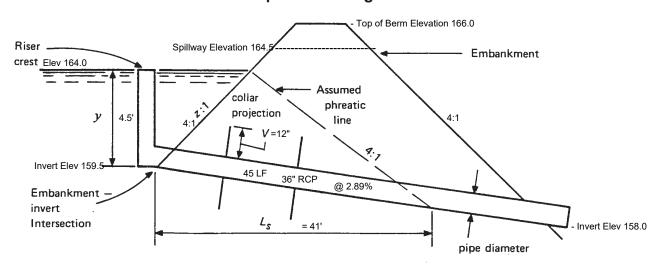
STANDARD E&S WORKSHEET # 17 Sediment Basin Discharge Capacity

PROJECT NAME: Snipes Tract Athletic Fields	
LOCATION: Dolington Road and Quarry Road, Lower Makefield Tow	nship, Bucks County, PA
PREPARED BY: Maryellen Saylor, P.E.	DATE: <u>December 6, 2016, Revised July 17, 2017</u>
CHECKED BY: Mark W. Eisold, P.E.	DATE: December 6, 2016, Revised July 17, 2017

PRINCIPAL SPILLWAY DISCHARGE CAPACITY

BASIN NO:

WATER		low into Top IPORARY R			low into Top RMANENT R		BARI PIPE F		PRINCIPAL
SURFACE ELEVATION ⁴ (FT)	HEAD (FT)	ORIFICE FLOW ¹ Q(CFS)	WEIR FLOW Q(CFS)	HEAD (FT)	HEAD FLOW ¹ (FT) Q(CFS)		HEAD ² (FT)	Q (CFS)	SPILLWAY CAPACITY ³ (CFS)
165.0	0.5	38.5	33.6	0.5	38.5	Q(CFS) 33.6	5.5	122.8	33.6


EMERGENCY SPILLWAY DISCHARGE CAPACITY

WATER SURFACE ELEVATION ⁴ (FT)	EMERGENCY SPILLWAY BOTTOM WIDTH ⁵ (FT)	TABLE OR C VALUE USED ⁶	EMERGENCY SPILLWAY CAPACITY (CFS)	REQUIRED DISCHARGE CAPACITY (CFS)	TOTAL DISCHARGE CAPACITY PROVIDED (CFS) ⁷
165.0	10	2.8	99	97.5	132.6

- 1. Flow into top of riser only (Flow through perforations not included) $Q = cA(2gh) = 0.6(8)(2*32.2*1.0)^{1/2} = 38.5cfs$
- 2. Water surface elevation minus elevation at centerline of pipe outlet
- 3. Least of orifice, weir, or pipe flow (Peak flow from 10 yr/24 hr storm Min.)
- 4. 24" below top of embankment (12" if 100-year storm routed through basin)
- 5. 8 Ft. minimum
- Use Tables 7.5 through 7.8 or equation for broad-crested weir [Q = CLH^{1.5}, where C ≤ 2.8 (MAX)]; for Riprap larger than R-3 or flows less than 1.5' deep adjust C downward]
- 7. Principal Spillway Capacity + Emergency Spillway Capacity

Principal SpillwayQ = $2.8(12)(1.0)^{1.5}$ = 33.6 cfs Emergency SpillwayQ = $2.8(100)(0.5)^{0.5}$ = 99.0 cfs Total Discharge Capacity = 132.6 cfs

STANDARD E&S WORKSHEET # 18 Anti-seep Collar Design

BASIN NO.	TEMP. OR PERM.	Y (FT)	Z	Ls (FT)	Lf (FT)	V (IN)	BARREL DIA. (IN)	COLLAR SIZE (IN)	NO. COLLARS	COLLAR SPACING (FT)	DISTANCE TO 1 ST COLLAR (FT)
1	PERM	4.5	4	41	45	12	36	60	2	14	14
<u> </u>											

APPENDIX F:

SOILS REPORT

AbB-Abbottstown silt loam, 3 to 8 percent slopes

Map Unit Setting

- National map unit symbol: 17n4
- Elevation: 200 to 1,300 feet
- Mean annual precipitation: 36 to 50 inches
- Mean annual air temperature: 46 to 57 degrees F
- Frost-free period: 130 to 200 days
- Farmland classification: Farmland of statewide importance

Map Unit Composition

- Abbottstown and similar soils: 88 percent
- Minor components: 12 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Abbottstown

Setting

- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, toeslope
- Landform position (three-dimensional): Base slope, head slope
- *Down-slope shape:* Concave, linear
- Across-slope shape: Linear, concave
- *Parent material:* Acid reddish brown residuum weathered from shale and siltstone

Typical profile

- Ap 0 to 10 inches: silt loam
- Bt 10 to 20 inches: silt loam
- Bx 20 to 39 inches: channery loam
- BCg 39 to 48 inches: channery silt loam
- *R 48 to 49 inches:* bedrock

Properties and qualities

- *Slope:* 3 to 8 percent
- *Depth to restrictive feature:* 15 to 30 inches to fragipan; 40 to 60 inches to lithic bedrock
- Natural drainage class: Somewhat poorly drained
- Runoff class: Very high
- Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
- Depth to water table: About 6 to 18 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Low (about 3.7 inches) Interpretive groups
- Land capability classification (irrigated): None specified

- Land capability classification (nonirrigated): 3w
- Hydrologic Soil Group: D
- Hydric soil rating: No

Minor Components

Penn

- Percent of map unit: 5 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Summit, shoulder, backslope
- Landform position (three-dimensional): Interfluve, side slope, nose slope
- *Down-slope shape:* Linear, convex
- Across-slope shape: Linear, convex
- Hydric soil rating: No

Croton

- Percent of map unit: 5 percent
- Landform: Depressions
- Landform position (two-dimensional): Toeslope
- Landform position (three-dimensional): Base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: Yes

Klinesville

- Percent of map unit: 2 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Shoulder, summit
- Landform position (three-dimensional): Interfluve, nose slope
- Down-slope shape: Convex
- Across-slope shape: Convex
- Hydric soil rating: No

BwB-Buckingham silt loam, 3 to 8 percent slopes

Map Unit Setting

- National map unit symbol: I7nv
- Elevation: 150 to 900 feet
- Mean annual precipitation: 38 to 48 inches
- Mean annual air temperature: 45 to 57 degrees F
- Frost-free period: 150 to 210 days
- *Farmland classification:* Farmland of statewide importance

Map Unit Composition

- Buckingham and similar soils: 88 percent
- *Minor components:* 12 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Buckingham

Setting

- *Landform:* Drainageways
- Landform position (two-dimensional): Toeslope
- Landform position (three-dimensional): Head slope
- Down-slope shape: Concave, linear
- Across-slope shape: Concave, linear
- *Parent material:* Fine-loamy colluvium and old alluvium derived from shale and siltstone

Typical profile

- A 0 to 7 inches: silt loam
- Bt 7 to 30 inches: silt loam
- Btx1 30 to 44 inches: silty clay loam
- Btx2 44 to 70 inches: gravelly silt loam

Properties and qualities

- Slope: 3 to 8 percent
- *Depth to restrictive feature:* 20 to 40 inches to fragipan; 80 to 99 inches to lithic bedrock
- Natural drainage class: Somewhat poorly drained
- Runoff class: Very high
- Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.60 in/hr)
- Depth to water table: About 6 to 18 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Low (about 5.5 inches) Interpretive groups
- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 3w
- Hydrologic Soil Group: C/D
- Hydric soil rating: No

Minor Components

Bowmansville

- Percent of map unit: 8 percent
- Landform: Flood plains
- Landform position (two-dimensional): Footslope, toeslope
- Landform position (three-dimensional): Head slope
- *Down-slope shape:* Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: No

Knauers

• Percent of map unit: 2 percent

- Landform: Flood plains
- Landform position (two-dimensional): Toeslope, footslope
- Landform position (three-dimensional): Tread
- *Down-slope shape:* Linear, concave
- Across-slope shape: Linear, concave
- Hydric soil rating: Yes

Croton

- Percent of map unit: 2 percent
- Landform: Depressions
- Landform position (two-dimensional): Toeslope
- Landform position (three-dimensional): Base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: Yes

FoB-Fountainville silt loam, 3 to 8 percent slopes

Map Unit Setting

- National map unit symbol: 17pr
- *Elevation:* 250 to 1,000 feet
- *Mean annual precipitation:* 38 to 48 inches
- Mean annual air temperature: 45 to 63 degrees F
- Frost-free period: 155 to 200 days
- Farmland classification: All areas are prime farmland

Map Unit Composition

- Fountainville and similar soils: 90 percent
- Minor components: 7 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Fountainville

Setting

- Landform: Hills
- Landform position (two-dimensional): Backslope, summit
- Landform position (three-dimensional): Interfluve
- *Down-slope shape:* Linear, convex
- Across-slope shape: Linear, convex

Typical profile

- Ap 0 to 8 inches: silt loam
- Bt 8 to 22 inches: silt loam
- 2Btx 22 to 46 inches: channery silt loam
- *R 46 to 56 inches:* bedrock

Properties and qualities

• Slope: 3 to 8 percent

- *Depth to restrictive feature:* 20 to 40 inches to fragipan; 40 to 60 inches to lithic bedrock
- *Natural drainage class:* Moderately well drained
- Runoff class: Medium
- Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)
- Depth to water table: About 18 to 30 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Low (about 4.0 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 2e
- Hydrologic Soil Group: C
- Hydric soil rating: No

Minor Components

Penn

- Percent of map unit: 5 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Shoulder, backslope
- Landform position (three-dimensional): Side slope, nose slope
- *Down-slope shape:* Linear, convex
- Across-slope shape: Convex, linear
- Hydric soil rating: No

Doylestown

- Percent of map unit: 1 percent
- Landform: Drainageways
- Landform position (two-dimensional): Toeslope, footslope, backslope
- Landform position (three-dimensional): Head slope
- Down-slope shape: Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: Yes

Abbottstown

- Percent of map unit: 1 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, toeslope
- Hydric soil rating: No

PnB—Penn-Lansdale complex, 3 to 8 percent slopes

Map Unit Setting

- National map unit symbol: 17rv
- Elevation: 250 to 950 feet
- Mean annual precipitation: 36 to 50 inches

- Mean annual air temperature: 46 to 57 degrees F
- Frost-free period: 160 to 200 days
- Farmland classification: All areas are prime farmland

Map Unit Composition

- Penn and similar soils: 69 percent
- Lansdale and similar soils: 25 percent
- Minor components: 6 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Penn

Setting

- Landform: Hillslopes
- Landform position (two-dimensional): Shoulder, backslope
- Landform position (three-dimensional): Side slope, nose slope
- *Down-slope shape:* Linear, convex
- Across-slope shape: Convex, linear
- *Parent material:* Residuum weathered from shale and siltstone **Typical profile**
- Ap 0 to 10 inches: channery silt loam
- Bt 10 to 22 inches: channery silt loam
- C 22 to 28 inches: very channery silt loam
- *R 28 to 48 inches:* bedrock

Properties and qualities

- Slope: 3 to 8 percent
- Depth to restrictive feature: 20 to 40 inches to lithic bedrock
- Natural drainage class: Well drained
- Runoff class: Low
- Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 6.00 in/hr)
- Depth to water table: More than 80 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Low (about 4.1 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 2e
- Hydrologic Soil Group: B
- Hydric soil rating: No

Description of Lansdale

Setting

- Landform: Hillsides
- Landform position (two-dimensional): Summit, shoulder, backslope

- Landform position (three-dimensional): Side slope
- Down-slope shape: Convex
- Across-slope shape: Convex
- *Parent material:* Residuum weathered from sandstone and/or residuum weathered from conglomerate

Typical profile

- Ap 0 to 10 inches: channery loam
- Bt 10 to 30 inches: sandy loam
- *C 30 to 47 inches:* channery loamy sand
- *R 47 to 57 inches:* bedrock

Properties and qualities

- Slope: 3 to 8 percent
- Depth to restrictive feature: 42 to 60 inches to lithic bedrock
- Natural drainage class: Well drained
- Runoff class: Medium
- Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
- Depth to water table: More than 80 inches
- Frequency of flooding: None
- *Frequency of ponding:* None
- Available water storage in profile: Low (about 5.6 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 2e
- Hydrologic Soil Group: B
- Hydric soil rating: No

Minor Components

Readington

- Percent of map unit: 6 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, backslope
- Landform position (three-dimensional): Base slope, head slope, side slope
- Down-slope shape: Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

UdB-Udorthents, shale and sandstone

Map Unit Setting

- National map unit symbol: 17sm
- *Elevation:* 200 to 1,500 feet
- Mean annual precipitation: 36 to 55 inches
- Mean annual air temperature: 45 to 57 degrees F

- Frost-free period: 160 to 214 days
- Farmland classification: Not prime farmland

Map Unit Composition

- Udorthents, shale and sandstone, and similar soils: 85 percent
- *Minor components:* 15 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Udorthents, Shale And Sandstone

Setting

- Landform: Ridges
- Landform position (two-dimensional): Summit, shoulder, backslope
- Landform position (three-dimensional): Interfluve, side slope, nose slope
- *Down-slope shape:* Convex, linear
- Across-slope shape: Convex, linear
- *Parent material:* Graded areas of shale and siltstone; graded areas of sandstone and shale

Typical profile

- Ap 0 to 6 inches: silt loam
- C 6 to 60 inches: silt loam

Properties and qualities

- Slope: 0 to 8 percent
- Depth to restrictive feature: 20 to 99 inches to lithic bedrock
- Natural drainage class: Well drained
- Runoff class: Very high
- Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.06 to 6.00 in/hr)
- Depth to water table: About 60 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Very low (about 2.9 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 7s
- Hydrologic Soil Group: A
- Hydric soil rating: No

Minor Components

Penn

- Percent of map unit: 5 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Shoulder, backslope
- Landform position (three-dimensional): Side slope, nose slope

- Down-slope shape: Linear, convex
- Across-slope shape: Convex, linear
- Hydric soil rating: No

Abbottstown

- Percent of map unit: 2 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, toeslope
- Landform position (three-dimensional): Base slope, head slope
- Down-slope shape: Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

Readington

- Percent of map unit: 2 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, backslope
- Landform position (three-dimensional): Base slope, head slope, side slope
- *Down-slope shape:* Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

Reaville

- Percent of map unit: 2 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, summit
- Landform position (three-dimensional): Interfluve, base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

Bowmansville

- Percent of map unit: 2 percent
- Landform: Flood plains
- Landform position (two-dimensional): Footslope, toeslope
- Landform position (three-dimensional): Head slope
- Down-slope shape: Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: No

Berks

- Percent of map unit: 1 percent
- Landform: Ridges, valleys
- Landform position (two-dimensional): Backslope
- Landform position (three-dimensional): Side slope
- Down-slope shape: Convex, linear
- Across-slope shape: Convex, linear

• Hydric soil rating: No

Croton

- Percent of map unit: 1 percent
- Landform: Depressions
- Landform position (two-dimensional): Toeslope
- Landform position (three-dimensional): Base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: Yes

UrB-Urban land-Lansdale complex, 0 to 8 percent slopes

Map Unit Setting

- National map unit symbol: 17t1
- Mean annual precipitation: 40 to 48 inches
- Mean annual air temperature: 48 to 57 degrees F
- Frost-free period: 160 to 215 days
- Farmland classification: Not prime farmland

Map Unit Composition

- Urban land: 65 percent
- Lansdale and similar soils: 25 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Urban Land

Setting

- Down-slope shape: Linear
- Across-slope shape: Linear
- *Parent material:* Pavement, buildings and other artifically covered areas **Typical profile**
- *H1 0 to 6 inches:* variable

Properties and qualities

- *Slope:* 0 to 8 percent
- Depth to restrictive feature: 10 to 99 inches to lithic bedrock
- Runoff class: Very high
- Available water storage in profile: Very low (about 0.0 inches) Interpretive groups
- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 8s
- Hydric soil rating: No

Description of Lansdale

Setting

- Landform: Hillsides
- Landform position (two-dimensional): Summit, shoulder, backslope

- Landform position (three-dimensional): Side slope
- Down-slope shape: Convex
- Across-slope shape: Convex
- *Parent material:* Residuum weathered from sandstone and/or residuum weathered from conglomerate

Typical profile

- Ap 0 to 10 inches: loam
- *B 10 to 38 inches:* loam
- C 38 to 55 inches: loamy sand
- *R 55 to 60 inches:* bedrock

Properties and qualities

- Slope: 0 to 8 percent
- Depth to restrictive feature: 42 to 99 inches to lithic bedrock
- Natural drainage class: Well drained
- Runoff class: Low
- Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
- Depth to water table: More than 80 inches
- Frequency of flooding: None
- *Frequency of ponding:* None
- Available water storage in profile: Moderate (about 6.7 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 2e
- Hydrologic Soil Group: B
- Hydric soil rating: No

UxB-Urban land-Penn complex, 0 to 8 percent slopes

Map Unit Setting

- National map unit symbol: 17t9
- *Elevation:* 200 to 1,000 feet
- Mean annual precipitation: 36 to 55 inches
- Mean annual air temperature: 46 to 57 degrees F
- Frost-free period: 160 to 215 days
- Farmland classification: Not prime farmland

Map Unit Composition

- Urban land: 65 percent
- Penn and similar soils: 25 percent
- *Minor components:* 10 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Urban Land

Setting

- Landform: Hills
- Down-slope shape: Linear
- Across-slope shape: Linear

• *Parent material:* Pavement, buildings and other artifically covered areas **Typical profile**

• *C* - 0 to 6 inches: variable

Properties and qualities

- Slope: 0 to 8 percent
- *Depth to restrictive feature:* 10 to 100 inches to lithic bedrock
- Available water storage in profile: Very low (about 0.0 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 8s
- Hydric soil rating: No

Description of Penn

Setting

- Landform: Hillslopes
- Landform position (two-dimensional): Shoulder, backslope
- Landform position (three-dimensional): Side slope, nose slope
- *Down-slope shape:* Linear, convex
- Across-slope shape: Convex, linear
- *Parent material:* Residuum weathered from shale and siltstone **Typical profile**
- Ap 0 to 8 inches: channery silt loam
- Bt 8 to 21 inches: channery silt loam
- C 21 to 34 inches: very channery silt loam
- *R 34 to 44 inches:* bedrock

Properties and qualities

- Slope: 0 to 8 percent
- Depth to restrictive feature: 20 to 40 inches to lithic bedrock
- *Natural drainage class:* Well drained
- Runoff class: Very low
- Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 6.00 in/hr)
- Depth to water table: More than 80 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Low (about 4.1 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 2e
- Hydrologic Soil Group: в

• Hydric soil rating: No

Minor Components

Readington

- Percent of map unit: 4 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, backslope
- Landform position (three-dimensional): Base slope, head slope, side slope
- *Down-slope shape:* Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

Croton

- Percent of map unit: 4 percent
- Landform: Depressions
- Landform position (two-dimensional): Toeslope
- Landform position (three-dimensional): Base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: Yes

Reaville

- Percent of map unit: 2 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, summit
- Landform position (three-dimensional): Interfluve, base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

UxD-Urban land-Penn complex, 8 to 25 percent slopes

Map Unit Setting

- National map unit symbol: 17tb
- *Elevation:* 200 to 1,000 feet
- Mean annual precipitation: 36 to 55 inches
- Mean annual air temperature: 44 to 57 degrees F
- Frost-free period: 130 to 200 days
- Farmland classification: Not prime farmland

Map Unit Composition

- Urban land: 65 percent
- Penn and similar soils: 25 percent
- Minor components: 10 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Urban Land

Setting

- Landform: Hills
- Down-slope shape: Linear
- Across-slope shape: Linear
- *Parent material:* Pavement, buildings and other artifically covered areas **Typical profile**
- C 0 to 6 inches: variable

Properties and qualities

- Slope: 8 to 25 percent
- *Depth to restrictive feature:* 10 to 79 inches to lithic bedrock
- Available water storage in profile: Very low (about 0.0 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 8s
- Hydric soil rating: No

Description of Penn

Setting

- Landform: Hillslopes
- Landform position (two-dimensional): Shoulder, backslope
- Landform position (three-dimensional): Side slope, nose slope
- Down-slope shape: Linear, convex
- Across-slope shape: Convex, linear
- *Parent material:* Residuum weathered from shale and siltstone **Typical profile**
- Ap 0 to 8 inches: channery silt loam
- Bt 8 to 21 inches: channery silt loam
- C 21 to 34 inches: very channery silt loam
- *R 34 to 44 inches:* bedrock

Properties and qualities

- Slope: 8 to 25 percent
- Depth to restrictive feature: 20 to 40 inches to lithic bedrock
- Natural drainage class: Well drained
- Runoff class: Low
- Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 6.00 in/hr)
- Depth to water table: More than 80 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Low (about 4.1 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 4e

- Hydrologic Soil Group: B
- Hydric soil rating: No

Minor Components

Croton

- Percent of map unit: 4 percent
- Landform: Depressions
- Landform position (two-dimensional): Toeslope
- Landform position (three-dimensional): Base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: Yes

Readington

- Percent of map unit: 4 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, backslope
- Landform position (three-dimensional): Base slope, head slope, side slope
- *Down-slope shape:* Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

Reaville

- Percent of map unit: 2 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, summit
- Landform position (three-dimensional): Interfluve, base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

INFILTRATION REPORT FOR THE SNIPES SITE

Block and Lot: 016-002

Lower Makefield Township, Bucks County, Pennsylvania

November 1, 2016 (Revised May 11, 2017)

Prepared for:

Lower Makefield Township 1100 Edgewood Road Yardley, PA 19067

CONSULTING ENGINEERS

Corporate Headquarters: 1456 Ferry Road, Building 500 Doylestown, PA 18901 (215) 345-9400 *Regional Office:* 2738 Rimrock Drive Stroudsburg, PA 18360 (570) 629-0300 *Regional Office:* 559 Main Street, Suite 230 Bethlehem, PA 18018 (610) 419-9407

TABLE OF CONTENTS

PROJECT OBJECTIVE AND SCOPE OF WORK PUBLISHED GEOLOGICAL / SOILS INFORMATION FIELD INVESTIGATION, OBSERVATIONS AND DATA

- APPENDIX I TEST PIT LOCATION PLAN
- APPENDIX II DOUBLE RING INFILTROMETER TEST RESULTS
- APPENDIX III NRCS SOIL INFORMATION

P:\2016\1677054\Design Data\SWM\Infiltration\Rptto.LM.Infiltration Report.docx

PROJECT OBJECTIVE AND SCOPE OF WORK

Boucher & James, Inc. has completed the geotechnical investigation for the Snipes Tract located in Lower Makefield Township, Bucks County, Pennsylvania. The investigation involved evaluation of the subsurface soil conditions for stormwater infiltration.

The scope of work included performing test pits in areas proposed for stormwater infiltration. Soils profiles were examined and described using standard nomenclature including Munsell color charts. Test pits were dug typically to a minimum depth of six feet from the soil surface or until refusal at bedrock. Following examination of the soils, infiltration testing at representative locations was conducted. The infiltration testing was performed using double ring infiltrometers and percolation tests. Methods described in the Standard Test Method for Infiltration Rate of Soils in Field Using Double-Ring Infiltrometer (ASTM D 3385-03), as referenced in Appendix C of the Pennsylvania Stormwater Best Management Practices Manual (BMP Manual), as well as percolation testing directly described in the BMP Manual were utilized to conduct the testing.

PUBLISHED GEOLOGIC / SOILS INFORMATION

According to the Geologic Map of Bucks County, Pennsylvania (1950) the site is situated within an area underlain by the Triassic Period Stockton Formation. The excavations appear to confirm the presence of the Stockton Formation bedrock which typically consists of medium to coarse grained sandstone, siltstone and mudstone with interbedded shale. The Stockton Formation does not consist of Karst or carbonate geology. No sinkhole evidence was noted on the site.

According to the USDA Natural Resources Conservation Service Web Soil Survey, soils on site in the area of the test pits consist of the Penn – Lansdale Complex. These soils are described as well drained with water tables at more than eighty inches from the soil surface. Bedrock is typically encountered between twenty-eight and forty-eight inches from the soil surface. Examination of the test pits appears to generally match with the published soils data.

FIELD INVESTIGATION, OBSERVATIONS AND DATA

On October 14th and 26th, 2016 and May 10th 2017, nineteen test pits were performed on the site. Pits were dug at the locations shown on the plan in Appendix I. The pit locations corresponded to potential infiltration areas associated with stormwater facilities. Topsoil depths at the test pits ranged between seven and ten inches thick.

Overall soils varied in composition throughout the test areas. Mottling was noted in only one test pit, near the soil surface, and appeared to be due to soil compaction. Bedrock was encountered in a third of the test pits at depths between twenty and ninety-six from the soil surface.

The soil examinations and testing revealed variable soils across the site which resulted in a wide range of infiltration rates, from limited to good infiltration capacity. Additional measures, such as modified soils as described in the BMP manual, should be considered for infiltration rates exceeding six inches per hour. The test pit soil descriptions and infiltration test results are included in Appendix II.

APPENDIX I

APPENDIX II

APPENDIX III

SITE INVESTIGATION AND PERCOLATION TEST REPORT FOR STORMWATER INFILTRATION

Site	e Locati	ion: <u>Sr</u>	nipes Tr	act		Municipal	lity: Lower	Makefield	1	Cour	nty: <u>Bucks</u>	1
Soi	I Type:	PnB										
	escription		ed by:	Terry Harris	, SEO #02596	6			Date	e: October	14, 2017	
			Toet F	Pit # A						Add	litional Pits	
	Inches		103(1	ι <i>π</i> Α	Desc	ription of Ho	orizon			Auc		
0		8	A, 10YR	4/3, SIL, VFF		-						
8	то	33		R5/8, SIL, FR								
33	то	80	B2, 5YR	3/3, SIL, VFI	, SBK							
80	ТО		BEDRO	СК								
	TO									D	ale de la tradition	7
	TO									Dep	oth to Limiting 80 Incl	
/eath	epth belov er Conditi onditions:	ions:	-	5 Feet ow 40 F		⁼ or above Frozen	X Dry		Rain, Sleet, S Presoak		l hours) No	
			Wei	A Diy		FIOZEII		24 11001	Flesuak	res A	INO	
	Hole No.	Yes	No	Reading Interval	Reading No. 1: Inches of Drop	Reading No. 2: Inches of Drop	Reading No. 3: Inches of Drop	Reading No. 4: Inches of Drop	Reading No. 5: Inches of Drop	Reading No. 6: Inches of Drop	Reading No. 7: Inches of Drop	Reading No. 8: Inches of Drop
-	1	X	NO	XX / 30	0.125	0.125	0.125	0.125	2.00	2.00	2.00	2.00
	2	Х		XX / 30	0.125	0.125	0.125	0.125				
	3	Х		XX / 30	0.125	0.125	0.125	0.125				
	*** Wat	ter remaii	ning in the	e hole at the e	end of the fina	al 30 minute p	presoak? Yes	, use 30 mini	ute interval; No	o use 10 min	ute interval	
		[Drop durin	ıg	Perc. Rate as	s D	epth of	Infi	Itration Rate			
ŀ	lole No.	t	final perio	d	Minutes / Incl	า	Hole	(Re	duction Fact	or from BM	P Manual Ap	oplied)
_	1		0.125		240.00		12 "					
	2		0.125		240.00		12 "				(minutes / in	ch)
							10 "		6.00 Initia	al Water Dep	th (Inches)	
	3		0.125		240.00		12 "					(1
	3		0.125		240.00		12		0.125 Aver	age / Final V	Vater Level D colation Holes	

SITE INVESTIGATION AND PERCOLATION TEST REPORT FOR STORMWATER INFILTRATION

Soll Description Completed by: Terry Harris, SEO #02596 Date: October 14, 2017 Test Pit # B Additional Pits Test Pit # B Additional Pits Description of Horizon 0 70 82 Pit 10% Pits, Sit, FR, SBK Description Converted Parameters Description Converted Parameters 22 70 70 B2, 5YR3/3, Sit, VFI, SBK Description Converted Parameters Description Converted Parameters Description Converted Parameters Percolation Test: Percolation Test: Date: May 10, 2017 Test depth below existing grade: 5 Feet Weather Conditions: Betow 40 F X 40 F or above X Dry Reading Reading No.3: Inches of In		e Locati il Type:		nipes Tra	act		Municipa	ality: <u>Low</u>	er Makefi	eld	Cour	nty: <u>Bucks</u>	i
Test PH # B Additional Pits Inches Description of Horizon Description of Horizon 0 10 8 10/764/3, SIL, VFR, GR Ester Philo Ester		•		ed by: -		SEO #02506	x			Date	2 [.] Ootobor	14 0017	
Inches Description of Horizon 0 Tro 8 A. 10YR4/3, SL, VFR, GR 32 To 70 B2, 5YR3/3, SIL, VFI, SBK		coorption	Complet		reny nam:	5, SEO #02590)					14, 2017	
0 To 8 A. 10/PR4/3. SIL, VFR, GR 8 To 32 B1, 10/PR5/8. SIL, VFR, SBK				Test Pi	it#B						Add	ditional Pits	
8 ro 32 B1, 10YR5/8, SIL, VFI, SBK 32 ro 70 B2, 5YR3/3, SIL, VFI, SBK 70 ro BEDROCK ro BEDROCK Depth to Limiting Zone 70 ro Date: May 10, 2017 Test depth below existing grade: 5 Feet Weather Conditions: Wet Tory Frazen Reading Reading Reading Reading Reading No. 1: No. 2: No. 3: No. 4: No. 5: No. 7: No. 8: Hole No. Yes No Inches of		Inches				Desci	ription of H	<u>lorizon</u>					
32 ro 70 70 B2, 5YR3/3, SIL, VFI, SBK 70 ro BEDROCK Depth to Limiting Zone 70 ro													
To BEDROCK To	8	то	32										
ro	32	TO	70			I, SBK							
To	70			BEDROC	CK								
Percolation Test: Percolation Test: Percolation Test Completed by: James Haklar Date: May 10, 2017 Fest depth below existing grade: 5 Feet Weather Conditions: Below 40 F X Dry Reading Reading Reading Reading Reading Reading Reading No. 5: No. 5: No. 6: No. 7: No. 8: Image: Solid Conditions: Wet X Dry Frozen Reading Reading Reading Reading Reading No. 6: No. 7: No. 8: Image: Solid Conditions: Wet X Drop Inches of											Dor	ath to Limiting	7000
Percolation Test: Date: May 10, 2017 Test depth below existing grade: 5 Feet Weather Conditions: Below 40 F \mathbf{x} 40 F or above \mathbf{X} Dry Rain, Sleet, Snow (last 24 hours) Soll Conditions: Wet \mathbf{X} Dry Frozen \mathbf{X} Hour Presoak Yes \mathbf{X} No Image: the state of													
Percolation Test Completed by: James Haklar Date: May 10, 2017 Test depth below existing grade: 5 Feet Weather Conditions: Below 40 F X 40 F or above X Dry Rain, Sleet, Snow (last 24 hours) Soil Conditions: Wet X Dry Frozen 24 Hour Presoak Yes X No Image: Soil Conditions: Wet X Dry Reading Reading Reading Reading Reading Reading Reading Reading Reading No. 3: No. 4: Inches of													
Weather Conditions: Below 40 F x 40 F or above Frozen X Dry Rain, Sleet, Snow (last 24 hours) Soil Conditions: Wet X Dry Frozen 24 Hour Presoak Yes X No Image: Soil Conditions: Wet X Dry Reading Reading Reading Reading Reading Reading No. 3: No. 4: No. 5: No. 6: No. 7: No. 8: Inches of Hole No. Yes No 1 Inches of Drop No Statstatstatsta				ted by:	James Hak	lar				Date	e: <u>May 10</u> ,	2017	
Image: No. 1: No. 1: No. 2: No. 3: No. 4: No. 5: No. 6: No. 7: No. 8: Hole No. Yes No Inches of Drop	Veatl	ner Conditi	ions:	Belov	w 4 <u>0 F</u>			X			· · · · · · · · · · · · · · · · · · ·		
No. 1.No. 2.No. 3.No. 4.No. 3.No. 5.No. 5.No. 7.No. 7.No. 7.No. 7.Hole No.YesNoInches ofInches of<						-	-	-			-	-	-
Hole No. Yes No Interval Drop				***	Deedine								
Image: transmission of the state of th		Hole No	Ves	No	0	_	_	_				_	
2xXX / 304.5004.5004.3754.2503xXX / 302.6252.7502.6252.500*** Water remaining in the hole at the end of the final 30 minute presoak? Yes, use 30 minute interval; No use 10 minute intervalInfiltration Rate (Reduction Factor from BMP Manual Applied)12.25013.3312"2*4.2507.0612"32.50012.0012"Total of Minutes / Inch:25.33=12.67Minutes / Inch:25.33<			-	NO							2.00	2.00	2.00
3 x XX / 30 2.625 2.750 2.625 2.500 *** Water remaining in the hole at the end of the final 30 minute presoak? Yes, use 30 minute interval; No use 10 minute interval Mole No. Drop during final period Perc. Rate as Minutes / Inch Depth of Hole Infiltration Rate (Reduction Factor from BMP Manual Applied) 1 2.250 13.33 12 " " 12.67 Percolation Rate (minutes / inch) Initial Water Depth (Inches) 3 2.500 12.00 12 " 4.267 Percolation Rate (minutes / inch) Initial Water Depth (Inches) 3 2.500 12.00 12 " 4.74 Converted Percolation Holes (Inches) 0 0 12 " 4.74 Converted Percolation Rate (inches / hour) Total of Minutes / Inch: 25.33 = 12.67 Minutes / Infiltration Rate, I, (inches / hour)													
Drop during final period Perc. Rate as Minutes / Inch Depth of Hole Infiltration Rate (Reduction Factor from BMP Manual Applied) 1 2.250 13.33 12 " 2* 4.250 7.06 12 " 3 2.500 12.00 12 " 10.00 12 " 1.2.375 Average / Final Water Level Drop (Inches) 2.375 Average / Final Water Level Drop (Inches) 8.00 Diameter of Percolation Rate (inches / hour) Total of Minutes / Inch: 25.33 = 12.67 Minutes / Minutes / Minutes /		3	х		XX / 30	2.625	2.750	2.625	2.500)			
Hole No. final period Minutes / Inch Hole (Reduction Factor from BMP Manual Applied) 1 2.250 13.33 12 " 2* 4.250 7.06 12 " 3 2.500 12.00 12 " 6.00 Initial Water Depth (Inches) 2.375 Average / Final Water Level Drop (Inches) 8.00 Diameter of Percolation Holes (Inches) 8.00 Diameter of Percolation Holes (Inches) 10 12 " 4.74 Converted Percolation Rate (inches / hour)		*** Wat	ter remair	ning in the	hole at the	end of the fina	l 30 minute	presoak? Y				nute interval	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					-			•					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	-	l		1			(Reduction Fact	tor from BM	P Manual Ap	oplied)
3 2.500 12.00 12 6.00 Initial Water Depth (Inches) 2.375 Average / Final Water Level Drop (Inches) 8.00 Diameter of Percolation Holes (Inches) 4.74 Converted Percolation Rate (inches / hour) Total of Minutes / Inch: 25.33 = 12.67								12	r		olotion D-4-	(minuta- 1)-	ch)
2.375 Average / Final Water Level Drop (Inches 8.00 Diameter of Percolation Holes (Inches) 4.74 Converted Percolation Rate (inches / hou Total of Minutes / Inch: 25.33 = 12.67 Minutes / 2.15 Infiltration Rate, I, (inches / hour)	_							12					CH)
8.00 Diameter of Percolation Holes (Inches) 4.74 Converted Percolation Rate (inches / hou Total of Minutes / Inch: 25.33 = 12.67 Minutes / 2.15 Infiltration Rate, I, (inches / hour)	_	3		2.500		12.00		12 "					kon (lasha-)
Total of Minutes / Inch: 25.33 = 12.67 Minutes / 2.15 Infiltration Rate, I, (inches / hour)									ļ				
			Total of	Minutes /	Inch:	25.33	=	12.67	Minutes /				
								12101		2.15		, , ,	/
			* - Perc	rate not u	sed in calc	ulation per BM	P Guidance	е					

DOUBLE RING INFILTROMETER TEST

Site Name:	Snipes Tract - Lower Makefield Township			Head	or Depth of Water (H):	6 Inches
Pit # / Location:	С			Outer	Ring Diameter:	12 Inches
Date Soil Described:	October 14, 2016			Inner	Ring Diameter:	8 Inches
Personnel:	Mr. Terry Harris			Deptl	n of Test Below Grade:	48 Inches
Infiltration Date:	October 26, 2016			Soil I	Description:	Soil Type: PnB
Personnel:	Mr. James Haklar	0	ТО	9	A, 10YR4/3, SIL, VF	R, GR
		9	TO	33	B1, 10YR5/8, SIL, FI	R, SBK
		33	TO	96	B2, 2.5YR5/3, SL, V	FR, GR
			TO			
			ТО			
			ТО			
			ТО			

INNER RING READINGS

		INFILTRATION	TEST 1			INFILTRATION	TEST 2		
Date	Time	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)
1									
10/26/16	10:35 AM								
10/26/16	10:50 AM	15	2,100	140.0	0.174	15	2,600	173.3	0.215
10/26/16	11:05 AM	15	2,000	133.3	0.166	15	2,350	156.7	0.195
10/26/16	11:20 AM	15	2,000	133.3	0.166	15	2,000	133.3	0.166
10/26/16	11:35 AM	15	1,930	128.7	0.160	15	1,960	130.7	0.162
						15	1,250	83.3	0.104
						15	1,300	86.7	0.108
						15	1,250	83.3	0.104
						15	1,240	82.7	0.103

TEST 1 INFILTRATION RATE

Inches per minute	0.16
Inches per hour	9.60
Inches per day	230.30

TEST 2 INFILTRATION RATE

Inches per minute	0.10
Inches per hour	6.17
Inches per day	147.97

DOUBLE RING INFILTROMETER TEST

Site Name:	Snipes Tract - Lower Makefield Township			Head	or Depth of Water (H):	6 Inches
Pit # / Location:	D			Outer	r Ring Diameter:	12 Inches
Date Soil Described:	October 14, 2016			Inner	Ring Diameter:	8 Inches
Personnel:	Mr. Terry Harris			Dept	h of Test Below Grade:	48 Inches
Infiltration Date:	October 26, 2016			Soil I	Description:	Soil Type: PnB
Personnel:	Mr. James Haklar	0	ТО	8	A, 10YR4/3, SIL, VF	FR, GR
		8	ТО	32	B1, 10YR5/8, SIL, F	R, SBK
		32	ТО	80	B2, 2.5YR5/3, CBSL	, VFR, GR
			ТО			
			ТО			
			ТО			
			ТО			

INNER RING READINGS

INFILTRATION TEST 1						INFILTRATION TEST 2			
Date	Time	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)
10/20/10	10.40 AM								
10/26/16 10/26/16	10:40 AM 10:55 AM	15	4,000	266.7	0.331	15	3,420	228.0	0.283
10/26/16	11:10 AM	15	4,000	266.7	0.331	15	3,430	228.7	0.284
10/26/16	11:25 AM	15	4,000	266.7	0.331	15	3,400	226.7	0.282
10/26/16	11:40 AM	15	4,000	266.7	0.331	15	3,420	228.0	0.283

TEST 1 INFILTRATION RATE

Inches per minute	0.33
Inches per hour	19.89
Inches per day	477.31

TEST 2 INFILTRATION RATE

Inches per minute	0.28
Inches per hour	17.00
Inches per day	408.10

Site Name:	Snipes Tract - Lower Makefield Township			Head	or Depth of Water (H):	6 Inches
Pit # / Location:	Ε			Outer	Ring Diameter:	12 Inches
Date Soil Described:	October 14, 2016			Inner	Ring Diameter:	8 Inches
Personnel:	Mr. Terry Harris			Deptl	n of Test Below Grade:	48 Inches
Infiltration Date:	October 26, 2016			Soil I	Description:	Soil Type: PnB
Personnel:	Mr. James Haklar	0	ТО	10	A, 10YR4/3, SIL, VF	R, GR
		10	ТО	50	B1, 10YR5/8, SIL, FF	R, SBK
		50	ТО	72	B2, 5YR4/6, SL, VFR	R, GR
		72	ТО	84	B3, 2.5YR5/3, SL, VI	FR, GR
			ТО			
			ТО			
			ТО			

INNER RING READINGS

		INFILTRATION	TEST 1			INFILTRATION	TEST 2		
Date Time		Lapse (Minutes) Volume Added Rate (I) I (ml) (ml/min)		Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	
10/06/116	10.45.436								
10/26/16	10:45 AM								
10/26/16	11:00 AM	15	30	2.0	0.002	15	1,000	66.7	0.083
10/26/16	11:15 AM	15	30	2.0	0.002	15	850	56.7	0.070
10/26/16	11:30 AM	15	20	1.3	0.002	15	680	45.3	0.056
10/26/16	11:45 AM	15	20	1.3	0.002	15	600	40.0	0.050
						15	600	40.0	0.050
						15	600	40.0	0.050
						15	600	40.0	0.050

TEST 1 INFILTRATION RATE

Inches per minute	0.00
Inches per hour	0.10
Inches per day	2.39

Inches per minute	0.05
Inches per hour	2.98
Inches per day	71.60

SITE INVESTIGATION AND PERCOLATION TEST REPORT FOR STORMWATER INFILTRATION

		ation: <u>S</u> e: <u>PnB</u>	Snipes Tra	act		Municipa	lity: Lower	Makefield		Cour	nty: <u>Bucks</u>	
	escripti	ion:										
		on Compl	eted by:	Terry Harris	, SEO #02596	3			Date	. October	14, 2017	
			-		,							
			Test Pi	it#F						<u>Add</u>	litional Pits	
	Inches	-				ription of He	<u>orizon</u>					
0	TO	8		4/3, SIL, VF								
8	TO	25		R5/8, SIL, F								
25	TO	34		R5/6, SIL, F								
34	то то	90	B3, 5YR3	3/3, SIL, VF	I, SBK							
-	_ то _									Den	oth to Limiting	Zone
											> 90 Inch	
		est Comp	ng grade:	James Hakl 2 Feet						.: <u>May 10,</u>	2017	
siu	eptribei		ng grade.	2 Feel								
	er Conc onditions		Belov Wet	w 40 F XDry		⁻ or above Frozen	XDry		Rain, Sleet, S Presoak		hours) No	
							X Dry Reading					Reading
				X Dry	Reading No. 1:	Frozen Reading No. 2:	Reading No. 3:	24 Hour Reading No. 4:	Presoak Reading No. 5:	Yes X Reading No. 6:	No Reading No. 7:	No. 8:
	onditions	s:	Wet	X Dry Reading	Reading No. 1: Inches of	Frozen Reading No. 2: Inches of	Reading No. 3: Inches of	24 Hour Reading No. 4: Inches of	Presoak Reading No. 5: Inches of	Yes X Reading No. 6: Inches of	No Reading No. 7: Inches of	No. 8: Inches of
il C	onditions	s: b. Yes	Wet	X Dry Reading Interval	Reading No. 1: Inches of Drop	Frozen Reading No. 2: Inches of Drop	Reading No. 3: Inches of Drop	24 Hour Reading No. 4: Inches of Drop	Presoak Reading No. 5:	Yes X Reading No. 6:	No Reading No. 7:	No. 8:
il C	Hole No	s: b. Yes	Wet	Reading Interval XX / 30	Reading No. 1: Inches of Drop 0.250	Frozen Reading No. 2: Inches of Drop 0.250	Reading No. 3: Inches of Drop 0.125	24 Hour Reading No. 4: Inches of Drop 0.125	Presoak Reading No. 5: Inches of	Yes X Reading No. 6: Inches of	No Reading No. 7: Inches of	No. 8: Inches of
il C	Hole No	s: b. Yes X X	Wet	Reading Interval XX / 30 XX / 30	Reading No. 1: Inches of Drop 0.250 0.250	Frozen Reading No. 2: Inches of Drop 0.250 0.250	Reading No. 3: Inches of Drop 0.125 0.250	24 Hour Reading No. 4: Inches of Drop 0.125 0.250	Presoak Reading No. 5: Inches of	Yes X Reading No. 6: Inches of	No Reading No. 7: Inches of	No. 8: Inches of
il C	Hole No	s: . Yes x x x	Wet **** No	Reading Interval XX / 30 XX / 30 XX / 30	Reading No. 1: Inches of Drop 0.250 0.250 0.125	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125	Reading No. 3: Inches of Drop 0.125 0.250 0.125	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125	Presoak Reading No. 5: Inches of Drop	Yes X Reading No. 6: Inches of Drop	No Reading No. 7: Inches of Drop	No. 8: Inches of
oil Co	Hole No	s: . Yes x x x	Wet **** No	Reading Interval XX / 30 XX / 30 XX / 30	Reading No. 1: Inches of Drop 0.250 0.250 0.125	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125	Reading No. 3: Inches of Drop 0.125 0.250 0.125	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125	Presoak Reading No. 5: Inches of	Yes X Reading No. 6: Inches of Drop	No Reading No. 7: Inches of Drop	No. 8: Inches of
il C	Hole No	s: . Yes x x x	Wet	Reading Interval XX / 30 XX / 30 XX / 30 hole at the o	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 presoak? Yes	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min	Presoak Reading No. 5: Inches of Drop	Yes X Reading No. 6: Inches of Drop	No Reading No. 7: Inches of Drop	No. 8: Inches of
	Hole No 1 2 3 *** W	s: Yes X X Vater rem	Wet	Reading Interval XX / 30 XX / 30 XX / 30 hole at the	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 oresoak? Yes	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min	Presoak Reading No. 5: Inches of Drop ute interval; No Itration Rate	Yes X Reading No. 6: Inches of Drop	No Reading No. 7: Inches of Drop ute interval	No. 8: Inches of Drop
	Hole No 1 2 3 *** W	s: Yes X X Vater rem	Wet	Reading Interval XX / 30 XX / 30 XX / 30 hole at the	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina Perc. Rate as Minutes / Inch	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 oresoak? Yes Pepth of Hole	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min	Presoak Reading No. 5: Inches of Drop ute interval; No	Yes X Reading No. 6: Inches of Drop	No Reading No. 7: Inches of Drop ute interval	No. 8: Inches of Drop
	Hole No 1 2 3 *** W Hole No 1	s: Yes X X Vater rem	Wet	Reading Interval XX / 30 XX / 30 XX / 30 hole at the	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina Perc. Rate as Minutes / Inch 240.00	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 oresoak? Yes Pepth of Hole 12 "	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min	Presoak Reading No. 5: Inches of Drop ute interval; No Itration Rate eduction Facto	Yes X Reading No. 6: Inches of Drop	No Reading No. 7: Inches of Drop ute interval	No. 8: Inches of Drop
	Hole No 1 2 3 *** W Hole No 1 2*	s: Yes X X Vater rem	Wet	Reading Interval XX / 30 XX / 30 XX / 30 hole at the	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina Perc. Rate as Minutes / Inch	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 presoak? Yes Pepth of Hole 12 12	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min	Presoak Reading No. 5: Inches of Drop ute interval; No Itration Rate eduction Factor 240.00	Yes X Reading No. 6: Inches of Drop o use 10 min or from BM	No Reading No. 7: Inches of Drop ute interval P Manual Ap (minutes / ind	No. 8: Inches of Drop
	Hole No 1 2 3 *** W Hole No 1	s: Yes X X Vater rem	Wet	Reading Interval XX / 30 XX / 30 XX / 30 hole at the	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina Perc. Rate as Minutes / Inch 240.00 120.00	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 oresoak? Yes Pepth of Hole 12 "	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min	Presoak Reading No. 5: Inches of Drop Ute interval; No Itration Rate Eduction Factor 240.00 Initia	Yes X Reading No. 6: Inches of Drop o use 10 min or from BM olation Rate	No Reading No. 7: Inches of Drop ute interval P Manual Ap (minutes / ind th (Inches)	No. 8: Inches of Drop poplied)
	Hole No 1 2 3 *** W Hole No 1 2*	s: Yes X X Vater rem	Wet	Reading Interval XX / 30 XX / 30 XX / 30 hole at the	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina Perc. Rate as Minutes / Inch 240.00 120.00	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 presoak? Yes Pepth of Hole 12 12	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min	Presoak Reading No. 5: Inches of Drop ute interval; No Itration Rate eduction Factor 240.00 6.00 Initia 0.125 Aver	Yes X Reading No. 6: Inches of Drop o use 10 min ouse 10 min ouse 10 min ouse 10 min ouse 10 min ouse 10 min	No Reading No. 7: Inches of Drop ute interval wite interval P Manual Ap (minutes / ind th (Inches) Vater Level D	No. 8: Inches of Drop pplied) ch)
	Hole No 1 2 3 *** W Hole No 1 2*	s: Yes X X Vater rem	Wet	Reading Interval XX / 30 XX / 30 XX / 30 hole at the	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina Perc. Rate as Minutes / Inch 240.00 120.00	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 presoak? Yes Pepth of Hole 12 12	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min	Presoak Reading No. 5: Inches of Drop ute interval; No Itration Rate eduction Factor 240.00 6.00 Initia 0.125 Aver	Yes X Reading No. 6: Inches of Drop o use 10 min ouse 10 min ouse 10 min ouse 10 min ouse 10 min ouse 10 min	No Reading No. 7: Inches of Drop ute interval P Manual Ap (minutes / ind th (Inches)	No. 8: Inches of Drop pplied) ch)
	Hole No 1 2 3 *** W Hole No 1 2*	s: Yes X X Vater rem	Wet	Reading Interval XX / 30 XX / 30 XX / 30 hole at the	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina Perc. Rate as Minutes / Inch 240.00 120.00	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 presoak? Yes Pepth of Hole 12 12	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min	Presoak Reading No. 5: Inches of Drop ute interval; No Itration Rate eduction Factor 240.00 6.00 Initia 0.125 Aver	Yes X Reading No. 6: Inches of Drop o use 10 min ouse 10 min ouse 10 min ouse 10 min ouse 10 min ouse 10 min	No Reading No. 7: Inches of Drop ute interval wite interval P Manual Ap (minutes / ind th (Inches) Vater Level D	No. 8: Inches of Drop pplied) ch)
	Hole No 1 2 3 *** W Hole No 1 2*	s: Yes X X Vater rem	Wet	Reading Interval XX / 30 XX / 30 XX / 30 hole at the	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina Perc. Rate as Minutes / Inch 240.00 120.00	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 presoak? Yes Pepth of Hole 12 12	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min	Presoak Reading No. 5: Inches of Drop ute interval; No Itration Rate 240.00 Perc 6.00 Initia 0.125 Aver 8.00 Diam	Yes X Reading No. 6: Inches of Drop o use 10 min o use 10 min olation Rate I Water Dep age / Final W neter of Perc	No Reading No. 7: Inches of Drop ute interval P Manual Ap (minutes / ind th (Inches) Vater Level D olation Holes	No. 8: Inches of Drop oplied) ch) (Inches)
	Hole No 1 2 3 *** W Hole No 1 2*	s: yes x x x x yater rem;	Wet	X Dry Reading Interval XX / 30 XX / 30 XX / 30 XX / 30 hole at the or	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina Perc. Rate as Minutes / Inch 240.00 120.00 240.00	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 oresoak? Yes Depth of Hole 12 12 12	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min Infi (Re	Presoak Reading No. 5: Inches of Drop ute interval; No Itration Rate eduction Facto 240.00 Perc 6.00 Initia 0.125 Aver 8.00 Diam 0.25 Conv	Yes X Reading No. 6: Inches of Drop o use 10 min out on min out on man out on	No Reading No. 7: Inches of Drop ute interval P Manual Ap (minutes / ind th (Inches) Vater Level D olation Holes	No. 8: Inches of Drop pplied) ch) (Inches) nches / hour
	Hole No 1 2 3 *** W Hole No 1 2*	s: Yes X X X /ater rem.	Wet	X Dry Reading Interval XX / 30 XX / 30 XX / 30 hole at the or	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina Perc. Rate as Minutes / Inch 240.00 120.00	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 oresoak? Yes Pepth of Hole 12 12 12 12	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min Infi (Reading) (Reading) Infi	Presoak Reading No. 5: Inches of Drop ute interval; No Itration Rate eduction Facto 240.00 Perc 6.00 Initia 0.125 Aver 8.00 Diam 0.25 Conv	Yes X Reading No. 6: Inches of Drop o use 10 min out on min out on man out on	No Reading No. 7: Inches of Drop ute interval P Manual Ap (minutes / ind th (Inches) Vater Level D olation Holes	No. 8: Inches of Drop pplied) ch) (Inches) nches / hour

Site Name:	Snipes Tract - Lower Makefield Township			Head	or Depth of Water (H):	6 Inches
Pit # / Location:	G			Outer	Ring Diameter:	12 Inches
Date Soil Described:	October 14, 2016			Inner	Ring Diameter:	8 Inches
Personnel:	Mr. Terry Harris			Depth	n of Test Below Grade:	Inches
Infiltration Date:				Soil I	Description:	Soil Type: PnB
Personnel:		0	ТО	9	A, 10YR4/3, SIL, VF	R, GR
		9	ТО	21	B1, 10YR5/8, SIL, FI	R, SBK
		21	ТО	33	B2, 10YR5/6, SIL, FI	R, SBK
		33	ТО	84	B3, 5YR3/3, SIL, VF	I, SBK
			ТО			
			ТО			
			ТО			

INFILTRATION TESTING WAS NOT PERFORMED AT THIS LOCATION

INNER RING READINGS

	INFILTRATION TEST 1						INFILTRATION TEST 2			
Date	Time	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	

TEST 1 INFILTRATION RATE

Inches per minute Inches per hour Inches per day

TEST 2 INFILTRATION RATE

Site Name:	Snipes Tract - Lower Makefield Township			Head	or Depth of Water (H):	6 Inches
Pit # / Location:	Н			Outer	Ring Diameter:	12 Inches
Date Soil Described:	October 14, 2016			Inner	Ring Diameter:	8 Inches
Personnel:	Mr. Terry Harris			Dept	n of Test Below Grade:	48 Inches
Infiltration Date:	October 14, 2016			Soil I	Description:	Soil Type: PnB
Personnel:	Mr. Terry Harris	0	ТО	10	A, 10YR4/3, SIL, VF	R, GR
		10	ТО	20	B1, 10YR5/8, SIL, FF	R, SBK
		20	ТО	96	B2, 5YR3/3, SIL, VF	I, SBK
		96	ТО		BEDROCK	
			ТО			
			ТО			
			ТО			

INNER RING READINGS

		INFILTRATION	TEST 1			INFILTRATION	TEST 2		
Date Time		Lanse (Minutes)		Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)
	1 1								
10/14/16	12:35 PM								
10/14/16	12:50 PM	15	0	0.0	0.000	15	0	0.0	0.000
10/14/16	1:05 PM	15	40	2.7	0.003	15	0	0.0	0.000
10/14/16	1:20 PM	15	20	1.3	0.002	15	0	0.0	0.000
10/14/16	1:35 PM	15	10	0.7	0.001	15	0	0.0	0.000
10/14/16	1:50 PM	15	0	0.0	0.000	15	0	0.0	0.000

TEST 1 INFILTRATION RATE

Inches per minute	0.00
Inches per hour	0.00
Inches per day	0.00

Inches per minute	0.00
Inches per hour	0.00
Inches per day	0.00

Site Name:	Snipes Tract - Lower Makefield Township			Head	or Depth of Water (H):	6 Inches
Pit # / Location:	I			Outer	Ring Diameter:	12 Inches
Date Soil Described:	October 14, 2016			Inner	Ring Diameter:	8 Inches
Personnel:	Mr. Terry Harris			Depth	of Test Below Grade:	48 Inches
Infiltration Date:	October 14, 2016			Soil E	Description:	Soil Type: PnB
Personnel:	Mr. Terry Harris	0	ТО	8	A, 10YR4/3, SIL, VF	R, GR
		8	TO	27	B1, 10YR5/8, SIL, FI	R, SBK
		27	TO	49	B2, 2.5YR5/4, SL, VI	FR, GR
		49	TO	84	B3, 2.5YR5/3, SL, VI	FR, GR
			TO			
			ТО			
			ТО			

INNER RING READINGS

		INFILTRATION	TEST 1			INFILTRATION	TEST 2		
Date	Time	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)
10/14/16	12:40 PM								
10/14/16	12:40 PM 12:55 PM	15	650	43.3	0.054	15	500	33.3	0.041
10/14/16	1:10 PM	15	700	46.7	0.058	15	460	30.7	0.038
10/14/16	1:25 PM	15	670	44.7	0.056	15	420	28.0	0.035
10/14/16	1:40 PM	15	680	45.3	0.056	15	470	31.3	0.039
10/14/16	1:55 PM	15	670	44.7	0.056	15	440	29.3	0.036

TEST 1 INFILTRATION RATE

Inches per minute	0.06
Inches per hour	3.33
Inches per day	79.95

Inches per minute	0.04
Inches per hour	2.19
Inches per day	52.50

Site Name:	Snipes Tract - Lower Makefield Township			Head	l or Depth of Water (H):	6 Inches	
Pit # / Location:	J			Oute	er Ring Diameter:	12 Inches	
Date Soil Described:	October 14, 2016			Inne	r Ring Diameter:	8 Inches	
Personnel:	Mr. Terry Harris			Dept	h of Test Below Grade:	Inches	
Infiltration Date:				Soil	Description:	Soil Type: PnB	
Personnel:		0	ТО	8	A, 10YR4/3, SIL, VFI	R, GR	
		8	TO	19	B1, 10YR5/8, SIL, FR	, SBK	
		19	TO	31	B1, 7.5YR5/8, SIL, FI	R, SBK	
		31	TO	60	B3, 5YR3/3, FLSIL, V	/FI, SBK	
		60	TO		BEDROCK		
			TO				
			ТО				

INFILTRATION TESTING WAS NOT PERFORMED AT THIS LOCATION

INNER RING READINGS

	INFILTRATION TEST 1						N TEST 2		
Date	Time	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)

TEST 1 INFILTRATION RATE

Inches per minute Inches per hour Inches per day

TEST 2 INFILTRATION RATE

Site Name:	Snipes Tract - Lower Makefield Township			Head	or Depth of Water (H):	6 Inches
Pit # / Location:	Κ			Outer	Ring Diameter:	12 Inches
Date Soil Described:	October 14, 2016			Inner	Ring Diameter:	8 Inches
Personnel:	Mr. Terry Harris			Deptl	n of Test Below Grade:	48 Inches
Infiltration Date:	October 26, 2016			Soil I	Description:	Soil Type: PnB
Personnel:	Mr. James Haklar	0	ТО	7	A, 10YR4/3, SIL, VF	R, GR
		7	ТО	40	B1, 7.5YR5/8, SIL, F	R, SBK
		40	ТО	80	B2, 2.5YR5/3, SL, V	FR, GR
			ТО			
			ТО			
			ТО			
			ТО			

INNER RING READINGS

INFILTRATION TEST 1					INFILTRATION	INFILTRATION TEST 2				
Time	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)		
8:25 AM										
8:40 AM	15	850	56.7	0.070	15	3,450	230.0	0.286		
8:55 AM	15	850	56.7	0.070	15	3,000	200.0	0.249		
9:10 AM	15	820	54.7	0.068	15	3,000	200.0	0.249		
9:25 AM	15	820	54.7	0.068	15	3,000	200.0	0.249		
					15	3,000	200.0	0.249		
	8:25 AM 8:40 AM 8:55 AM 9:10 AM	Time Lapse (Minutes) 8:25 AM 8:40 AM 15 8:55 AM 15 9:10 AM 15	Time Lapse (Minutes) Volume Added (ml) 8:25 AM 8:40 AM 15 850 8:55 AM 15 850 9:10 AM 15 820	Time Lapse (Minutes) Volume Added (ml) Rate (I) (ml/min) 8:25 AM 8:40 AM 15 850 56.7 8:55 AM 15 850 56.7 9:10 AM 15 820 54.7	Time Lapse (Minutes) (ml) (ml/min) (inches/min) 8:25 AM 8:40 AM 15 850 56.7 0.070 8:55 AM 15 850 56.7 0.070 9:10 AM 15 820 54.7 0.068	Time Lapse (Minutes) Volume Added (ml) Rate (I) (ml/min) Infiltration Rate (I) (inches/min) Lapse (Minutes) 8:25 AM 8:25 AM 15 850 56.7 0.070 15 8:55 AM 15 850 56.7 0.070 15 9:10 AM 15 820 54.7 0.068 15 9:25 AM 15 820 54.7 0.068 15	Time Lapse (Minutes) Volume Added (ml) Rate (I) (ml/min) Infiltration Rate (I) (inches/min) Lapse (Minutes) Volume Added (ml) 8:25 AM 8:25 AM 15 850 56.7 0.070 15 3,450 8:55 AM 15 850 56.7 0.070 15 3,000 9:10 AM 15 820 54.7 0.068 15 3,000 9:25 AM 15 820 54.7 0.068 15 3,000	Time Lapse (Minutes) Volume Added (ml) Rate (I) (ml/min) Infiltration Rate (I) (inches/min) Lapse (Minutes) Volume Added (ml) Rate (I) (ml/min) 8:25 AM <t< td=""></t<>		

TEST 1 INFILTRATION RATE

Inches per minute	0.07
Inches per hour	4.08
Inches per day	97.85

Inches per minute	0.25
Inches per hour	14.92
Inches per day	357.98

Site Name:	Snipes Tract - Lower Makefield Township			Head or	Depth of Water (H):	6 Inches	
Pit # / Location:	L			Outer R	ing Diameter:	12 Inches	
Date Soil Described:	October 14, 2016			Inner Ri	ng Diameter:	8 Inches	
Personnel:	Mr. Terry Harris			Depth of	f Test Below Grade:	Inches	
Infiltration Date:				Soil Des	cription:	Soil Type: PnB	
Personnel:		0	ТО	8	A, 10YR4/3, SIL, VFR	, GR	
		8	ТО	20	B1, 10YR5/8, SIL, FR,	SBK	
		20	ТО		BEDROCK		
			ТО				
			ТО				
			ТО				
			то				

INFILTRATION TESTING WAS NOT PERFORMED AT THIS LOCATION

INNER RING READINGS

INFILTRATION TEST 1						INFILTRATION	TEST 2		
Date	Time	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)

TEST 1 INFILTRATION RATE

Inches per minute Inches per hour Inches per day

TEST 2 INFILTRATION RATE

Site Name:	Snipes Tract - Lower Makefield Township			Head or	Depth of Water (H):	6 Inches		
Pit # / Location:	М			Outer R	ing Diameter:	12 Inches		
Date Soil Described:	October 14, 2016			Inner R	ing Diameter:	8 Inches		
Personnel:	Mr. Terry Harris				of Test Below Grade:	Inches		
Infiltration Date:				Soil De	scription:	Soil Type: PnB		
Personnel:			ТО	9	A, 10YR4/3, SIL, VFR, GR			
		9	ТО	34	B1, 10YR5/8, SIL, FR,	SBK		
		34	ТО		BEDROCK			
			ТО					
			ТО					
			ТО					
			ТО					

INFILTRATION TESTING WAS NOT PERFORMED AT THIS LOCATION

INNER RING READINGS

		INFILTRATION	N TEST 1			INFILTRATION	TEST 2		
Date	Time	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)

TEST 1 INFILTRATION RATE

Inches per minute Inches per hour Inches per day

TEST 2 INFILTRATION RATE

Site Name:	Snipes Tract - Lower Makefield Township			Head	or Depth of Water (H):	6 Inches
Pit # / Location:	Ν			Outer	Ring Diameter:	12 Inches
Date Soil Described:	October 14, 2016	ber 14, 2016				8 Inches
Personnel:	Mr. Terry Harris	Depth of Test Below G			of Test Below Grade:	48 Inches
Infiltration Date:	October 26, 2016			Soil I	Description:	Soil Type: PnB
Personnel:	Mr. James Haklar	0	ТО	7	A, 10YR4/3, SIL, VF	R, GR
		7	TO	24	B1, 10YR5/8, SIL, FI	R, SBK
		24	TO	44	B2, 2.5YR5/3, SL, VI	FI, GR
		44	ТО	84	B3, 2.5YR5/3, SL, VI	FR, GR
			TO			
			ТО			
			ТО			

INNER RING READINGS

		INFILTRATION	N TEST 1			INFILTRATION	INFILTRATION TEST 2					
Date Time		Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)			
10/26/16	8:20 AM											
10/26/16	8:35 AM	15	100	6.7	0.008	15	200	13.3	0.017			
10/26/16	8:50 AM	15	50	3.3	0.004	15	150	10.0	0.012			
10/26/16	9:05 AM	15	30	2.0	0.002	15	150	10.0	0.012			
10/26/16	9:20 AM	15	20	1.3	0.002	15	150	10.0	0.012			

TEST 1 INFILTRATION RATE

Inches per minute	0.00
Inches per hour	0.10
Inches per day	2.39

Inches per minute	0.01
Inches per hour	0.75
Inches per day	17.90

Site Name:	Snipes Tract - Lower Makefield Township			Head or	Depth of Water (H):	6 Inches		
Pit # / Location:	0			Outer R	ing Diameter:	12 Inches		
Date Soil Described:	1: October 26, 2016				ing Diameter:	8 Inches		
Personnel:	Mr. Terry Harris				of Test Below Grade:	Inches		
Infiltration Date:				Soil De	scription:	Soil Type: PnB		
Personnel:		0	ТО	8	A, 10YR4/3, SIL, VFR, GR			
		8	TO	43	B1, 10YR5/8, SIL, FR,	SBK		
		43	TO	64	B2, 5YR3/3, FLSIL, V	FI, SBK		
			TO					
			TO					
			TO					
			ТО					

INFILTRATION TESTING WAS NOT PERFORMED AT THIS LOCATION

INNER RING READINGS

		INFILTRATIO	N TEST 1		INFILTRATION	N TEST 2			
Date	Time	Lapse (Minutes	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)
	<u>г </u>		1	[· · · · · · · · · · · · · · · · · · ·			[

TEST 1 INFILTRATION RATE

Inches per minute Inches per hour Inches per day

TEST 2 INFILTRATION RATE

SITE INVESTIGATION AND PERCOLATION TEST REPORT FOR STORMWATER INFILTRATION

Site Location: <u>Snipes</u> Soil Type: PnB						Municipa	llity: Lowe	r Makefie	eld	Cour	nty: <u>Bucks</u>	
So	oil Type:	PnB										
	Descriptio Description		ed by:	Terry Harris	, SEO #02596	5			Date	e: May 10,	2017	
			-	•								
			Test F	Pit # P						Add	litional Pits	
	Inches					ription of H	orizon					
0		8 34		85/4, SIL, FF								
8			-	R6/6, SIL, F								
34		68 96	-	'R4/4, SIL, F								
68	<u>в то 9</u> то	90	D3, 2.3 f	'R4/4, VCBS	DIL, FI, ODN							
	то									Dep	oth to Limiting	Zone
											> 96 Incl	
	olation Test		ted by:	James Hakl	ar				Date	e: May 10,	2017	
			•							<u> </u>		
Test	depth below	w existing	g grade:	5 Feet								
	ther Conditi	ons:		w 40 F		or above	X Dr		Rain, Sleet, S			
3011 0	Conditions:		Wet	X Dry	/	Frozen		24 110	ur Presoak	Yes X	No	
					Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
		ŀ	***		No. 1:	No. 2:	No. 3:	No. 4:	No. 5:	No. 6:	No. 7:	No. 8:
				Reading	Inches of	Inches of	Inches of	Inches o	f Inches of	Inches of	Inches of	Inches of
	Hole No.	Yes	No	Interval	Drop	Drop	Drop	Drop	Drop	Drop	Drop	Drop
	1	х		XX / 30	0.375	0.250	0.250	0.250				
	2	X		XX / 30	0.250	0.375	0.250	0.250				
	3 *** Wat	X X	ning in the	XX / 30	0.125	0.125	0.125	0.125	inute interval; No	use 10 min	ute interval	
	vva	erreman					presoak: re	5, use 50 m				
		-	Drop durin			-		lr.	nfiltration Rate			
			Jrop durin	q	Perc. Rate as	L	Depth of					
	Hole No				Minutes / Inch		•			or from BM	P Manual Δr	nlied)
	Hole No.		final perio		Minutes / Inch		Hole		Reduction Fact	or from BM	P Manual Ap	oplied)
_	1*		final perio 0.250		120.00		Hole 12 "		Reduction Fact			
_	1* 2		final perio 0.250 0.250		120.00 120.00		Hole 12 " 12 "		Reduction Fact	olation Rate	(minutes / ine	
	1*		final perio 0.250		120.00		Hole 12 "		Reduction Fact 180.00 Perc 6.00 Initia	colation Rate al Water Dep	(minutes / ind th (Inches)	ch)
-	1* 2		final perio 0.250 0.250		120.00 120.00		Hole 12 " 12 "		Reduction Fact 180.00 Perc 6.00 Initia 0.188 Aver	colation Rate al Water Dep rage / Final V	(minutes / ind th (Inches) Vater Level D	ch) rop (Inches)
-	1* 2		final perio 0.250 0.250		120.00 120.00		Hole 12 " 12 "		Reduction Fact 180.00 Perc 6.00 Initia 0.188 Aver	colation Rate al Water Dep rage / Final V	(minutes / ind th (Inches)	ch) rop (Inches)
	1* 2		final perio 0.250 0.250		120.00 120.00		Hole 12 " 12 "		Reduction Fact 180.00 Perc 6.00 Initia 0.188 Aver	colation Rate al Water Dep rage / Final V	(minutes / ind th (Inches) Vater Level D	ch) rop (Inches)
	1* 2		final perio 0.250 0.250		120.00 120.00		Hole 12 " 12 "		Reduction Fact 180.00 Perconstruction 6.00 Initia 0.188 Aver 8.00 Diam	colation Rate al Water Dep rage / Final V neter of Perc	(minutes / ind th (Inches) Vater Level D olation Holes	ch) rop (Inches) (Inches)
	1* 2	 	final perio 0.250 0.250 0.125	d	120.00 120.00 240.00		Hole <u>12</u> " <u>12</u> " <u>12</u> "		Reduction Fact 180.00 Perc 6.00 Initia 0.188 Aver 8.00 Dian 0.33 Con	colation Rate al Water Dep age / Final V neter of Perco verted Perco	(minutes / ind th (Inches) Vater Level D olation Holes lation Rate (ir	ch) rop (Inches) (Inches) nches / hour)
	1* 2	Total of	final perio 0.250 0.250 0.125 Minutes /	d	120.00 120.00 240.00 360.00		Hole <u>12</u> <u>12</u> <u>12</u> <u>12</u> <u>12</u> <u>180.00</u>	(I	Reduction Fact 180.00 Perc 6.00 Initia 0.188 Aver 8.00 Dian 0.33 Con	colation Rate al Water Dep age / Final V neter of Perco verted Perco	(minutes / ind th (Inches) Vater Level D olation Holes	ch) rop (Inches) (Inches) nches / hour)
	1* 2	Total of	final perio 0.250 0.250 0.125	d	120.00 120.00 240.00		Hole <u>12</u> <u>12</u> <u>12</u> <u>12</u> <u>12</u> <u>180.00</u>		Reduction Fact 180.00 Perc 6.00 Initia 0.188 Aver 8.00 Dian 0.33 Con	colation Rate al Water Dep age / Final V neter of Perco verted Perco	(minutes / ind th (Inches) Vater Level D olation Holes lation Rate (ir	ch) rop (Inches) (Inches) nches / hour)

Site Name:	Snipes Tract
Pit # / Location:	Pit Q
Date Soil Described:	May 10, 2017
Personnel:	Terry Harris
Infiltration Date:	May 10, 2017
Personnel:	Matt Roberts

		Head	or Depth of Water (H):	6 Inches
		Outer	Ring Diameter:	12 Inches
		Inner	Ring Diameter:	8 Inches
		Depth	of Test Below Grade:	54 Inches
		Soil D	Description:	Soil Type: PnB
0	то	12	A, 7.5YR4/2, SIL, FI,	PL, FEW / FAINT MOTTLES
12	TO	34	B1, 7.5YR4/2, SIL, F	R, SBK
34	ТО	51	B2, 7.5YR4/4, SIL, F	R, SBK
51	ТО	75	B3, 10YR6/6, SIL, FF	R, SBK
75	TO	80	B4, 2.5YR4/4, SIL, F	I, SBK
	TO			
	то			

INNER RING READINGS

		INFILT	RATIO	N TEST 1	l	INFILT	RATIO	N TEST 2	2	Ι	INFILT	RATIO	N TEST 3	3
Date	Time	Lapse (min.)	Volume Added (ml)	Rate (I) (ml/ min)	Infiltration Rate (I) (in./min.)	Lapse (min.)	Volume Added (ml)	Rate (I) (ml/ min)	Infiltration Rate (I) (in./min.)		Lapse (min.)	Volume Added (ml)	Rate (I) (ml/ min)	Infiltration Rate (I) (in./min.)
5/10/17	8:15 AM									Γ				
5/10/17	8:30 AM	15	30	2.0	0.002	15	100	6.7	0.008		15	0	0.0	0.000
5/10/17	8:45 AM	15	50	3.3	0.004	15	200	13.3	0.017		15	150	10.0	0.012
5/10/17	9:00 AM	15	30	2.0	0.002	15	180	12.0	0.015		15	70	4.7	0.006
5/10/17	9:15 AM	15	30	2.0	0.002	15	250	16.7	0.021		15	80	5.3	0.007
		TE	ST 1 INF	TILTRAT	TION RATE	TE	ST 2 INF	TLTRAT	ION RATE		TES	ST 3 INF	TLTRAT	TION RATI
		Inc	hes per r	ninute	0.00	Inc	hes per r	ninute	0.02		Inch	nes per r	ninute	0.0

0.15

3.58

Inches per hour

Inches per day

Lapse	Volume	Rate (I)	Infiltration
(min.)	Added	(ml/	Rate (I)
(11111.)	(ml)	min)	(in./min.)

0.008	15	0	0.0
0.017	15	150	10.0
0.015	15	70	4.7
0.021	15	80	5.3

0.04 1.24 Inches per hour I

29.83

Inches per minute	0.01
Inches per hour	0.40
Inches per day	9.55

0.27 Inches per Hour (Average of Test 1 and 3, highest rate not utilized per BMP Manual)

Inches per day

Site Name:	Snipes Tract
Pit # / Location:	Pit R
Date Soil Described:	May 10, 2017
Personnel:	Terry Harris
Infiltration Date:	May 10, 2017
Personnel:	Matt Roberts

		Head or Depth of Water (H):		6 Inches	
		Oute	r Ring Diameter:	12 Inches	
		Inner	r Ring Diameter:	8 Inches	
		Dept	h of Test Below Grade:	48 Inches	
		Soil	Description:	Soil Type: PnB	
0	ТО	13	FILL, 7.5YR4/3, SIL,	FR, SBK	
13	TO	24	Ab, 7.5YR4/4, SIL, F	R, SBK	
24	TO	48	B1, 7.5YR5/6, SIL, F	R, SBK	
48	TO	75	B2, 2.5YR4/4, SIL, F	I, SBK	
	TO				
	TO				
	TO				

INNER RING READINGS

Date	Time	Lapse (min.)
5/10/17	8:40 AM	
5/10/17	8:55 AM	15
5/10/17	9:10 AM	15
5/10/17	9:25 AM	15
5/10/17	9:40 AM	15

INFILTRATION TEST 2

15

15

15

15

Lapse (min.)	Volume	Rate (I)	Infiltration
	Added	(ml/	Rate (I)
	(ml)	min)	(in./min.)

			-		
0	0.0	0.000		15	
0	0.0	0.000		15	
0	0.0	0.000		15	
0	0.0	0.000		15	

TEST 2 INFILTRATION RATE

Inches per minute	0.00
Inches per hour	0.00
Inches per day	0.00

15	0	0.0	0.000
15	0	0.0	0.000
15	0	0.0	0.000
15	0	0.0	0.000

INFILTRATION TEST 3

Added

(ml)

Lapse

(min.)

Volume Rate (I)

(ml/

min)

Infiltration

Rate (I)

(in./min.)

TEST 3 INFILTRATION RATE

Inches per minute	0.00
Inches per hour	0.00
Inches per day	0.00

TEST 1 INFILTRATION RATE

INFILTRATION TEST 1

Added

(ml)

0

0

0

0

Inches per minute

Inches per hour

Inches per day

Volume Rate (I)

(ml/

min)

0.0

0.0

0.0

0.0

Infiltration

Rate (I)

(in./min.)

0.000

0.000

0.000

0.000

0.00

0.00

0.00

0.00 Inches per Hour

Page 1 of 1

Site Name:	Snipes Tract
Pit # / Location:	Pit S
Date Soil Described:	May 10, 2017
Personnel:	Terry Harris
Infiltration Date:	May 10, 2017
Personnel:	James Haklar

		Head o	or Depth of Water (H):	6 Inches	
		Outer Ring Diameter:		12 Inches	
		Inner Ring Diameter:		8 Inches	
		Depth	of Test Below Grade:	72 Inches	
		Soil De	escription:	Soil Type: PnB	
0	то	7	A, 7.5YR5/4, SIL, FR	R, SBK	
7	ТО	30	B1, 10YR6/6, SIL, FF	R, SBK	
30	ТО	84	B2, 2.5YR4/4, SIL, F	I/FR, SBK	
84	ТО		BEDROCK		
	TO				
	ТО				
	ТО				

INNER RING READINGS

Date	Time	Lapse (min.)
5/10/17	9:15 AM	
5/10/17	9:30 AM	15
5/10/17	9:45 AM	15
5/10/17	10:00 AM	15
5/10/17	10:15 AM	15

INFILTRATION TEST 2

Lapse	Volume	Rate (I)	Infiltration
(min.)	Added	(ml/	Rate (I)
(mm.)	(ml)	min)	(in./min.)

15	0	0.0	0.000
15	0	0.0	0.000
15	0	0.0	0.000
15	0	0.0	0.000

TEST 2 INFILTRATION RATE

Inches per minute	0.00
Inches per hour	0.00
Inches per day	0.00

INFILTRATION TEST 3

Lapse	Volume	Rate (I)	Infiltration
(min.)	Added	(ml/	Rate (I)
(11111.)	(ml)	min)	(in./min.)

15	460	30.7	0.038
15	260	17.3	0.022
15	200	13.3	0.017
15	180	12.0	0.015
15	170	11.3	0.014

TEST 3 INFILTRATION RATE

Inches per minute	0.01
Inches per hour	0.85
Inches per day	20.29

Inches per day 0.00

TEST 1 INFILTRATION RATE

INFILTRATION TEST 1

Added

(ml)

0

0

0

0

Inches per minute

Inches per hour

Volume Rate (I)

(ml/

min)

0.0

0.0

0.0

0.0

Infiltration

Rate (I)

(in./min.)

0.000

0.000

0.000

0.000

0.00

0.00

* Inches per Hour

SOIL DESCRIP		Sheet <u>1</u> of <u>1</u>
Site Location: Municipality:	Snipes Tract Lower Makefield Township	County: Bucks
Soils Descrip	otion Complete by: <u>Terry Harris, SEO# 02596</u>	Date: <u>May 10, 2017</u>
Test Pit # <u>L</u>	Soil Type: PnB	Limiting Zone (Inches):
TO"	Test pit performed to confirm depth and comp	betency of bedrock.
TO"	Bedrock encountered at 20" below soil surfac	e, pit extended to a total depth of 48" below the soil surface.
TO"	Bedrock was relatively easily excavated utilizing	ng a standard backhoe.
TO"		
TO"		
Test Pit # <u>T</u>	Soil Type: PnB	Limiting Zone (Inches):
то "	Test pit performed to confirm depth and comp	petency of bedrock.
TO		e, pit extended to a total depth of 48" below the soil surface.
то	Bedrock was relatively easily excavated utilizi	
то "	,	*
TO"		
Test Pit # <u>U</u>	Soil Type: PnB	Limiting Zone (Inches):
TO"	Test pit performed to confirm depth and comp	petency of bedrock.
то"	Bedrock encountered at 65" below soil surfac	e, pit extended to a total depth of 96" below the soil surface.
то"	Bedrock was relatively easily excavated utilizing	ng a standard backhoe.
TO"		
то"		
Test Pit # <u>V</u>	Soil Type: PnB	Limiting Zone (Inches):
Inches	T	
TO"	Test pit performed to confirm depth and comp	
то"		e, pit extended to a total depth of 114" below the soil surface.
то" то "	Bedrock was relatively easily excavated utilizing	-
TO"		
Test Pit # <u>W</u> Inches	Soil Type: PnB	Limiting Zone (Inches):
TO"	Test pit performed to confirm depth and comp	petency of bedrock.
TO"	Bedrock encountered at 72" below soil surfac	e, pit extended to a total depth of 89" below the soil surface.
TO"	Bedrock was relatively easily excavated utilizing	ng a standard backhoe.
TO"		
TO "		

APPENDIX G:

E & S COMPLETENESS REVIEW CHECKLIST

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATERWAYS ENGINEERING AND WETLANDS

COMPLETENESS REVIEW CHECKLIST

Check-off: C = Complete, NC = Not Complete

		STANDA	RD E & S	AND PCSM COMPLETENESS REVIEW CHECKLIST	
				General	
App Included	icant Page Number	Revi C	ewer NC	Item	Item Location
X	1-14			Fully completed, properly signed and notarized Notice of Intent Form (1 original and 2 copies)	NOI
X				Permit filing fee of \$500 (general permit) or \$1500 (individual permit) payable to the appropriate Clean Water Fund	Enclosed
X				Disturbed acre fee payable to the Commonwealth of Pennsylvania Clean Water Fund	Enclosed
X				Proof of receipt of municipal and county Acts 14, 67, 68, and 127 notifications; copies of certified mail receipts or acknowledgment letters from the local municipality and county government.	Enclosed
X				A signed PNDI receipt for the project area showing "No Known Impact", or "Avoidance Measures" or "Potential Impact" and proof of delivery to the appropriate jurisdictional agency(ies) where further coordination is required, as appropriate) (Reference the <i>Instructions for a General (PAG-02) OR Individual</i> <i>NPDES Permit for stormwater discharges associated with</i> <i>construction activities-</i> Pennsylvania Natural Heritage Program (PNHP) & Pennsylvania Natural Diversity Inventory)	Enclosed
X	D 6 & 7 of 14			Complete Erosion and Sediment Control Plans (3 copies)	Drawings
X	D11&12 of 14			Complete Post Construction Stormwater Management Plan (3 copies)	Drawings
	N/A			Fully completed General Information Form (GIF) (Individual Permits	N/A-General Pe
	N/A			PHMC coordination letter/clearance (Individual Permits for 10 acres or more of disturbance only)	N/A-General Pe
X				Appendix A land use questions	NOI
Item Loca			vings and	= E&S Narrative, D or N = Drawings or Narrative Narrative S Plan Planning & Design 102.4(b)(4)	
qqA	icant	Revi	ewer		
	Page				
Included	Number	С	NC	Item	Item Location
Included		<u>c</u> □	NC	Item The E&S Plan is separate from the PCSM Plan and labeled "E&S" or "Erosion and Sediment Control Plan" and is the final plan for construction.	
	Number D 6 of 14			The E&S Plan is separate from the PCSM Plan and labeled "E&S" or "Erosion and Sediment Control Plan" and is the final plan for construction. Documentation provided that E&S Plan was prepared by person trained and experienced in E&S design methods and techniques	Location
X	Number D 6 of 14 E&S N 4 E&S N 14 D.6 of 14			The E&S Plan is separate from the PCSM Plan and labeled "E&S" or "Erosion and Sediment Control Plan" and is the final plan for construction. Documentation provided that E&S Plan was prepared by person	Location D & N N
X	Number D 6 of 14 E&S N 4 E&S N 14 D 6 of 14 E&S N 4 D 6 of 14 E&S N 4			The E&S Plan is separate from the PCSM Plan and labeled "E&S" or "Erosion and Sediment Control Plan" and is the final plan for construction. Documentation provided that E&S Plan was prepared by person trained and experienced in E&S design methods and techniques applicable to the size and scope of the project	Location D & N
	Number D 6 of 14 E&S N 4 E&S N 14 D 6 of 14 E&S N 4 D 6 of 14 E&S N 4			The E&S Plan is separate from the PCSM Plan and labeled "E&S" or "Erosion and Sediment Control Plan" and is the final plan for construction. Documentation provided that E&S Plan was prepared by person trained and experienced in E&S design methods and techniques applicable to the size and scope of the project E&S Plan minimizes extent and & duration of earth disturbance E&S Plan maximizes protection of existing drainage features and	Location D & N N D & N
	Number D 6 of 14 E&S N 4 E&S N 14 D 6 of 14 E&S N 4			The E&S Plan is separate from the PCSM Plan and labeled "E&S" or "Erosion and Sediment Control Plan" and is the final plan for construction. Documentation provided that E&S Plan was prepared by person trained and experienced in E&S design methods and techniques applicable to the size and scope of the project E&S Plan minimizes extent and & duration of earth disturbance E&S Plan maximizes protection of existing drainage features and vegetation	Location D & N N D & N D & N D & N
	Number D 6 of 14 E&S N 4 E&S N 14 D 6 of 14 E&S N 4			The E&S Plan is separate from the PCSM Plan and labeled "E&S" or "Erosion and Sediment Control Plan" and is the final plan for construction. Documentation provided that E&S Plan was prepared by person trained and experienced in E&S design methods and techniques applicable to the size and scope of the project E&S Plan minimizes extent and & duration of earth disturbance E&S Plan maximizes protection of existing drainage features and vegetation E&S Plan minimizes soil compaction E&S Plan utilizes other measures or controls that prevent or minimize	Location D&N N D&N D&N D&N D&N D&N
	Number D 6 of 14 E&S N 4 E&S N 14 D 6 of 14 E&S N 4	raphic fea		The E&S Plan is separate from the PCSM Plan and labeled "E&S" or "Erosion and Sediment Control Plan" and is the final plan for construction. Documentation provided that E&S Plan was prepared by person trained and experienced in E&S design methods and techniques applicable to the size and scope of the project E&S Plan minimizes extent and & duration of earth disturbance E&S Plan maximizes protection of existing drainage features and vegetation E&S Plan minimizes soil compaction E&S Plan utilizes other measures or controls that prevent or minimize generation of increased stormwater runoff	Location D&N N D&N D&N D&N D&N D&N
	Number D 6 of 14 E&S N 4 E&S N 14 D 6 of 14 E&S N 4	raphic fea		The E&S Plan is separate from the PCSM Plan and labeled "E&S" or "Erosion and Sediment Control Plan" and is the final plan for construction. Documentation provided that E&S Plan was prepared by person trained and experienced in E&S design methods and techniques applicable to the size and scope of the project E&S Plan minimizes extent and & duration of earth disturbance E&S Plan maximizes protection of existing drainage features and vegetation E&S Plan minimizes soil compaction E&S Plan utilizes other measures or controls that prevent or minimize generation of increased stormwater runoff the project site and the immediate surrounding area §102.4(b)	Location D&N N D&N D&N D&N D&N D&N
X X X X X X X App	Number D 6 of 14 E&S N 4 E&S N 14 D 6 of 14 E&S N 4 Sting topogr icant Page	raphic fea	atures of t	The E&S Plan is separate from the PCSM Plan and labeled "E&S" or "Erosion and Sediment Control Plan" and is the final plan for construction. Documentation provided that E&S Plan was prepared by person trained and experienced in E&S design methods and techniques applicable to the size and scope of the project E&S Plan minimizes extent and & duration of earth disturbance E&S Plan maximizes protection of existing drainage features and vegetation E&S Plan minimizes soil compaction E&S Plan utilizes other measures or controls that prevent or minimize generation of increased stormwater runoff the project site and the immediate surrounding area §102.4(b)	Location D & N N D & N D & N D & N D & N (5)(i) Item

	T۱	/pes, dept	h, slope,	locations and limitations of the soils §102.4(b)(5)(ii)	
Applicant Reviewer					
Included	Page Number	с	NC	Item	Item Location
X	D 6 of 14			Soil map provided	D or N
X	D 6 of 14			Soil use limitations and their resolutions provided	D or N
F	Past, presen	t and pro	posed lan	d uses and proposed alteration to project site §102.4(b)(5)(iii)
Арр	licant	Revi	ewer		
Included	Page Number	С	NC	Item	Item Location
X	E&S N 4			Past land uses for past 50 years addressed	Ν
Х	E&S N 4			Present land uses for last 5 years addressed	Ν
X	D 6 of 14			Proposed alteration/land uses shown on a plan map	D
Vo	olume and r	ate of run	off from t	he project site and its upstream watershed area §102.4(b)(5)(iv)
Арр	licant	Revi	ewer		
Included	Page Number	С	NC	Item	Item Location
\boxtimes	E&S N D.A. MAPS 1 & 2 of 2			Drainage area maps provided for proposed channels, basins, and traps * Located in E&S Narrative Report File Pockets	D or N
X	N/A			Runoff calculations provided for proposed channels * No channels	Ν
	Location	of all sur	face wate	rs and their classification under Chapter 93 §102.4(b)(5)(v)	
Арр	licant	Revi	ewer		
	Page				Item
Included	Number D 6 of 14	C		Item	Location
				Surface waters shown on plan map(s) Existing/designated uses of all streams, lakes, ponds, wetlands or	D D or N
	D 6 of 14			other surface waters identified	
				cation and type of perimeter and onsite BMPs §102.4(b)(5)(vi)	
Арр	licant	Revi	ewer		H
Included	Page Number	с	NC	Item	Item Location
X	E&S N 8			E&S BMPs identified/described	N
X	D 6 & 7 of 14			E&S BMPs shown on plan map(s)	D
		Sear	ience of E	MP installation and removal §102.4(b)(5)(vii)	
Арр	licant		ewer		
	Page				Item
Included	Number	С	NC	Item	Location
X	D 7 of 14			Construction sequence provided	D
				ulations and measurements §102.4(b)(5)(viii)	
Арр	licant	Depar	tment		
Included	Page Number	с	NC	Item	Item Location
X	E&S N E-1			Calculations provided for all proposed channels, traps, and basins	Ν
X	E&S N E-1			Standard E&S worksheets or equivalents completely filled out	N
				Plan drawings §102.4(b)(5)(ix)	
Арр	licant	Depar	tment		
Included	Page Number	с	NC	Item	Item Location
X	D 6 of 14			Plan map(s) showing proposed earthmoving provided	D
X	D 7 of 14			Details and/or typicals provided for each proposed E&S BMP	D

			Ma	intenance program §102.4(b)(5)(x)	
Арр	licant	Revi	ewer		
	Page	•			Item
Included	Number	C	NC	Item Maintenance of proposed BMPs addressed	Location
	D 6 & 7 of 14 D 6 & 7 of 14			Inspection schedule for proposed BMPs provided	D
X	D 7 of 14			Written report documenting inspections and repairs specified	D
X	D 7 01 14				D
Amm	l'acré			or disposal of materials §102.4(b)(5)(xi)	
Арр	licant	Revi	ewer		ltem
Included	Page Number	С	NC	Item	Location
X	D 6 of 14			Anticipated construction wastes identified	D
X	D 6 of 14			Instructions provided for proper recycling/disposal of materials provided	D
Geo	logic forma	tions/soil	condition	ns that may have the potential to cause pollution §102.4(b)(5)	(xii)
Арр	licant	Revi	ewer		
	Page				Item
Included	Number	С	NC	Item	Location
X	E&S N F-3			Geologic/soil conditions addressed	D or N
	D 6 of 14			Where potential for pollution identified, measures provided to avoid/minimize/or mitigate	D
				al impacts to surface waters §102.4(b)(5)(xiii)	1
Арр	licant	Revi	ewer		
	Page				Item
Included	Number	C	NC	Item	Location
X	E&S N 4			Potential for thermal impacts addressed	D or N
	D 6 of 14			Where potential for impacts exists, measures provided to avoid/minimize/or mitigate	D
	E&S Plan	designed	l and impl	emented to be consistent with PCSM Plan §102.4(b)(5)(xiv)	
Арр	licant	Revi	ewer		
Included	Page Number	с	NC	Item	Item Location
X	D 6 of 14			Proposed structural PCSM BMPs shown on the E&S plan map(s)	D
	N/A			Existing/proposed riparian buffers outside limits of disturbance	D
	D 6 of 14			Proposed infiltration BMPs outside proposed grading areas	D
	Boorin	Evic	ting/prop	osed riparian forest buffers §102.4(b)(5)(xv)	
Ann	licant	1	ewer		
N/A	Page	IXEVI	ewei	No Riparian Buffer	Item
Included	Number	С	NC	Item	Location
X	N/A			Existing/proposed riparian forest buffers shown on plan map(s)	D
X	N/A			Existing/proposed riparian forest buffers outside limits of disturbance	D
X	N/A			Protection provided for wetlands within riparian forest buffer	D or N
x	N/A			Riparian buffer offset shown, if necessary	D
				Antidegradation Analysis	
Арр	licant	Revi	ewer	N/A. There are no 110 or EV/Maters or Metherida Decessity Or site	
N/A Included	Page Number	С	NC	N/A: There are no HQ or EV Waters or Wetlands Present Onsite Item	Item Location
X	N/A			Equivalency demonstration for alternative BMPs to a riparian buffer or riparian forest buffer	
x	N/A			Evaluation of nondischarge alternatives, including demonstration that a nondischarge alternative does not exist for both E&S and PCSM	Ν
X	N/A			ABACT included where a nondischarge alternative does not exist for both E&S and PCSM	D or N
X	N/A			Nondischarge and ABACT BMPs have been identified for both E&S and PCSM	D or N