POST CONSTRUCTION STORMWATER MANAGEMENT REPORT

SNIPES TRACT ATHLETIC FIELDS

DOLINGTON ROAD AND QUARRY ROAD LOWER MAKEFIELD TOWNSHIP BUCKS COUNTY, PENNSYLVANIA

PROJECT NO. 1677054L

Prepared for: LOWER MAKEFIELD TOWNSHIP 1100 EDGEWOOD ROAD YARDLEY, PENNSYLVANIA 19067

> NOVEMBER 18, 2016 Revised MAY 30, 2017 Revised JULY 17, 2017 Prepared by:

BOUCHER & JAMES, INC. Consulting Engineers

Corporate Office Fountainville Professional Building 1456 Ferry Road, Building 500 Doylestown, PA 18901 (215) 345-9400 Fax (215) 345-9401 Plan prepared by and under direction of: Maryellen Saylor, P.E. of the Corporate Office

Regional Office 559 Main Street, Suite 230 Bethlehem, PA 18018 (610) 419-9407

SEAL

IMPORTANT

A copy of this report must be on the site at all times during construction.

TABLE OF CONTENTS

SITE DESCRIPTION & ANALYSIS Page
PROJECT DESCRIPTION Page
WATERSHED DESCRIPTION & HYDROLOGYPage
PCSM COMPLETENESS REVIEW CHECKLIST NOTEPage
POTENTIAL FOR THERMAL IMPACTS ADDRESSEDPage
RESULTS SUMMARY TABLES & DESIGN CRITERIA Page
COMPUTATION METHODSPage
SOILS TYPES, DESCRIPTIONS, AND LIMITATIONSPage
SOILS USE LIMITATIONS RESOLUTIONS

LIST OF APPENDICES

✓	Appendix A: Site LocationPage A-1
√	Appendix B: Pre-Development Drainage CalculationsPage B-1
√	Appendix C: Post-Development Drainage CalculationsPage C-1
√	Appendix D: Storm Sewer and Riprap DesignPage D-1
√	Appendix E: Geotechnical Report and Soil Infiltration Test ResultsPage E-1
√	Appendix F: Worksheets 1 through 5, Worksheet 10, BMP Chart 5.BPage F-1
✓	Appendix G: NOI Required DocumentsPage G-1
✓	Appendix H: PCSM Completeness Review ChecklistPage H-1

ATTACHMENTS

- ✓ Predevelopment Drainage Area Map
- ✓ Post Construction Stormwater Management Plans

POST CONSTRUCTION STORMWATER MANAGEMENT PLAN SITE DESCRIPTION & ANALYSIS

T.M.P. 20-016-001 & 20-016-002 LOWER MAKEFIELD TOWNSHIP

PROJECT DESCRIPTION

At the request of Lower Makefield Township, a stormwater management and erosion control study was conducted for the land development of a 36.26 acre property. The site is located within the Township owned Snipes Tract on Dolington Road (State Route SR 2075) and Quarry Road (Township Road Number T469), northwest of and adjacent to the intersection of the two roads in Lower Makefield Township, Bucks County, PA. The area of the site is 36.26 acres, the property being Tax Map Parcels 20-016-001-001 and 20-016-002. Access to the site is presently provided via an existing drive from Dolington Road. The site presently consists of a paved entrance drive, a gravel loop road, open grassed areas, former tree nursery areas, a Township salt shed and a buffer of trees along Interstate 95 and the existing adjacent residential properties. The Township proposes the construction of a municipal athletic field complex, which will include one entrance drive each from Dolington Road and Quarry Road, an internal loop road with parking areas, one small and three large athletic fields, a pavilion, a concession stand with restrooms, a future skatepark, a walking trail system, and stormwater management facilities on the site. The site is proposed to be served by public water and sewer. The site will continue to be accessed by an existing drive from Dolington Road and a proposed drive from Quarry Road. The proposed earth disturbance of the site is approximately 24.99 acres. The disturbance of trees will be minimized with the proposed project design. The locations and functions of the proposed detention basin and infiltration trenches have been carefully planned to effectively manage the stormwater, while recharging the ground. The protection of the natural resources is one of the main priorities of the development of this site. This study provides relevant site information, including existing and proposed stormwater runoff flow rates and volumes, to assist in evaluating the proposed project.

WATERSHED DESCRIPTION & HYDROLOGY

The pre-developed site consists of a paved entrance drive, a gravel loop road, open grassed areas, former tree nursery areas, and a buffer of trees along Interstate 95 and the existing adjacent residential properties. The drainage areas of the site were analyzed as woodlands, orchard, grass, bare earth, and paved areas. One portion of the site drains southeastward towards Quarry Road, and then to the intersection with Dolington Road to the existing offsite drainage ditch. The remaining area drains eastward towards Dolington Road and then to the intersection with Quarry Road to the existing offsite drainage ditch. The post-developed site will keep the existing drainage patterns generally in place. The proposed storm sewer has been disconnected to discharge overland through rip rap aprons into the detention basin. Infiltration trenches are proposed for ground recharge, stormwater management and water quality before discharging into the detention basin. The proposed development of the site will reduce the runoff rates to the

adjacent roads and downstream offsite drainage ditch. There will be no adverse impacts to the downstream properties with the proposed improvements. The closest waterway is Buck Creek. The Chapter 93 receiving Water Classification is WWF, MF (Warm Water Fishes, Migratory Fishes). The amount of stormwater that is discharged through the BMP'S is 2.2 acre-feet during a 2 year storm.

There are no naturally occurring geologic formations or soil conditions, such as Karst or Carbonate geology, that may have the potential to cause pollution during earth moving activities.

PCSM COMPLETENESS REVIEW CHECKLIST NOTES

The PCSM Plan is separate from the E&S Plan, is labeled "Post Construction Stormwater Management Plan" and shall be the Final Plan for Construction. The PCSM Plan has been designed/ prepared to:

- Preserve the integrity of the stream channels and maintain and protect the physical, biological and chemical qualities of the receiving stream.
- Prevent an increase in the rate of stormwater runoff.
- Minimize any increase in stormwater runoff volume.
- Minimize impervious areas.
- Maximize the protection of existing drainage features and existing vegetation.
- Minimize land clearing and grading.
- Minimize soil compaction.
- Utilize other structural or nonstructural BMP's that prevent or minimize changes in stormwater runoff.

The **Present Land Use for the past five (5) years** have been a leaf and mulch storage yard for the Township Public Works Department and an abandoned tree nursery. The **Past Land Uses** for the past 50 years have been agriculture and a tree nursery.

POTENTIAL FOR THERMAL IMPACTS ADDRESSED

- 1. Restricting the disturbance of onsite wooded areas and planting of trees (for shade and reduction of temperature).
- 2. Removing compacted bare ground, stone and paved areas onsite and replacing the areas with grassed athletic fields, which will promote infiltration, velocity of flow reduction and water temperature reduction.
- 3. Disconnection of storm sewer and roof drains to reduce the velocity of flow and allow for infiltration.
- 4. Construction of a stormwater detention basin to collect, cool and potentially infiltrate runoff before it is discharged at a controlled rate.
- 5. Construction of four (2) infiltration trenches to collect, store, cool and infiltrate stormwater runoff.

RESULTS SUMMARY: PEAK RUNOFF RATE TO INTERSECTION OF QUARRY ROAD AND DOLINGTON ROAD

Storm Event (Year)	Rainfall (inches)	Pre-development Conditions (cfs)	Post-development Discharge (cfs)	Postdev Reduction From Pre-dev Condition (%)		
1	2.64	4.91	2.67	45.6%		
2	3.36 13.27		4.86	63.4%		
5	5 4.32 28.95		10.17	64.9%		
10	5.28	47.69	29.71	37.7%		
25	6.24	68.65	48.35	29.6%		
50	7.20	91.14	64.02	29.8%		
100	8.40	120.75	78.49	35.0%		

The site is located in the Delaware River South Watershed. The peak rate of runoff to the intersection of Quarry Road and Dolington Road will be decreased from actual existing conditions to proposed conditions by 63.4% for the 2-year and 35.0% for the 100-year storms.

The **critical stages of implementation of the PCSM,** for which a licensed professional or designee shall be present on-site, are the installation of the infiltration trenches, the detention basin, the riprap aprons at the endwalls and the installation of the permanent orifice plate for the detention basin outlet structure.

The following permanent PCSM BMPs shall be installed:

- Two (2) Infiltration trenches
- Stormwater detention basin
- Three (3) Riprap aprons at the storm sewer outfalls
- Landscape Restoration

COMPUTATION METHODS

The design of the stormwater management proposed for this project has been performed with the aid of the Hydraflow Hydrographs Extension for AutoCAD Civil 3D 2009 software package. Hydraflow was developed by Autodesk, Inc., San Rafael, California. The runoff hydrographs were calculated utilizing the Soil Conservation Service (SCS), or also known as the National Resource Conservation Service (NRCS) method within the Hydraflow software.

The PCSM stormwater management calculations demonstrate that rate, volume and water quality were met in accordance with the Delaware River South Watershed Act 167 Plan, dated May 11, 2011.

		Limitations					
Soil Series & Map Symbol	Bldg w/out Basements	Bldg w/ Basements	Small Commercial Bldgs	Hydrologic Soil Group	Depth to Seasonal High Water Table	Depth to Bedrock	Erodibility
Abbottstown Silt Loam, 3 to 8% (AbB)	Very Limited, Depth to saturated zone	Very Limited, Depth to saturated zone	Very Limited, Depth to saturated zone	D	6" - 18"	40"- 60"	Slight - Moderate
Fountainville Silt Loam, 3 to 8% (FoB)	Very Limited, Depth to saturated zone Limited, Depth to bedrock	Very Limited, Depth to saturated zone Limited, Depth to bedrock	Very Limited, Depth to saturated zone Limited, Depth to bedrock	С	18" - 30"	40"- 60"	Slight- Moderate
Penns-Lansdale Complex 3 to 8% (PnB)	Not Limited	Not Limited	Not Limited	В	>78"	20"- 40"	Slight- Moderate

SOILS CHARACTERISTICS AND LIMITATIONS

SOILS USE LIMITATIONS RESOLUTIONS

CHARACTERISTIC	RESOLUTION
ERODIBLE	Stabilize immediately after grading. Shape earthwork to reduce concentrated flow areas across bare earth. Provide and maintain effective erosion controls downstream of soil.
HIGH WATER TABLE/ DEPTH TO SATURATION ZONE	Provide adequate underdrain. Avoid basement construction. Any ponded water should be pumped to an adequate erosion and sedimentation control facility. For example, to a sedimentation basin/trap or to a dirt bag.
PONDING	Provide dewatering during construction activities. Provide adequate underdrain/floodproofing for permanent structures.
CUTBANKS CAVE	Use proper slope stabilization, minimize cutbank slope
DEPTH TO HARD BEDROCK	Blasting may be required if bedrock is encountered which is not rippable.
SLOPE	Minimize slope of proposed grading. Use proper slope stabilization.
FROST ACTION	Avoid winter grading.
PIPING/ SEEPAGE	Provide dewatering during construction activities. Provide adequate underdrain/floodproofing for permanent structures. Avoid basement construction. Any ponded water should be pumped to an adequate erosion and sedimentation control facility. For example, to a sedimentation basin/trap or to a dirt bag.
THIN LAYER	Use onsite soils better suited for embankments.

APPENDIX A:

SITE LOCATION

PRE-DEVELOPMENT DRAINAGE CALCULATIONS

Watershed Model Schematic

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hydrograph Return Period Recap Hydrafiow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

		Inflow	Peak Outflow (cfs)								Hydrograph
lo.		hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		1.010	4.002		10.45	18.86	28.40	38.74	52.51	Predev DA to Quarry Road
2	SCS Runoff		3.939	9.282		18.50	29.05	40.49	52.56	68.27	Predev DA to Dolington Road
3	Combine	1, 2	4.906	13.27		28.95	47.69	68.65	91.14	120.75	Predev to Intersection
4	SCS Runoff		0.596	2.070		5.120	9.025	13.44	18.21	24.55	Postdev Bypass DA to Quarry Road
5	SCS Runoff		8.247	16.63		29.87	44.54	60.15	76.42	97.50	Postdev to Detention Basin
6	SCS Runoff		0.200	0.526		1.111	1.789	2.531	3.319	4.364	Postdev Bypass Flow to Dolington Ro
7	Reservoir	5	2.134	2.849		7.914	23.56	37.63	48.89	56.99	DetentionBasin Outflow
8	Combine	4, 6, 7	2.673	4.858		10.17	29.71	48.35	64.02	78.49	Postdev to Intersection
10	Reservoir	5	0.146	0.392		1.417	5.374	21.48	49.63	81.20	Sediment Basin
	1	1	1	1	1	1	1	1	1	1	1

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	1.010	2	744	11,616				Predev DA to Quarry Road
2	SCS Runoff	3.939	2	736	26,190				Predev DA to Dolington Road
3	Combine	4.906	2	736	37,807	1, 2			Predev to Intersection
4	SCS Runoff	0.596	2	748	6,683				Postdev Bypass DA to Quarry Road
5	SCS Runoff	8.247	2	738	48,117				Postdev to Detention Basin
6	SCS Runoff	0.200	2	732	1,263				Postdev Bypass Flow to Dolington Ro
7	Reservoir	2.134	2	780	46,021	5	161.11	13,460	DetentionBasin Outflow
8	Combine	2.673	2	760	53,967	4, 6, 7			Postdev to Intersection
10	Reservoir	0.146	2	1468	21,337	5	162.53	44,051	Sediment Basin
Bag	sin design.gp				Return	Period: 1 Y	ear	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

Predev DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 1.010 cfs
Storm frequency	= 1 yrs	Time to peak	= 744 min
Time interval	= 2 min	Hyd. volume	= 11,616 cuft
Drainage area	= 16.800 ac	Curve number	= 59
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.10 min
Total precip.	= 2.64 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

4

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

Predev DA to Quarry Road

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.350 = 150.0 = 3.36 = 5.33		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 17.60	+	0.00	+	0.00	=	17.60
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 280.00 = 2.50 = Unpaved =2.55	b	490.00 4.20 Unpave 3.31	d	920.00 2.10 Paved 2.95		
Travel Time (min)	= 1.83	+	2.47	+	5.21	=	9.50
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							27.10 min

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 2

Predev DA to Dolington Road

Hydrograph type	= SCS Runoff	Peak discharge	= 3.939 cfs
Storm frequency	= 1 yrs	Time to peak	= 736 min
Time interval	= 2 min	Hyd. volume	= 26,190 cuft
Drainage area	= 18.600 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 31.20 min
Total precip.	= 2.64 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 2

Predev DA to Dolington Road

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.350 = 150.0 = 3.36 = 6.67		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 16.09	+	0.00	+	0.00	=	16.09
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 1450.00 = 1.50 = Unpaved =1.98	ł	650.00 3.40 Paved 3.75		0.00 0.00 Paved 0.00		
Travel Time (min)	= 12.23	+	2.89	+	0.00	=	15.12
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							31.20 min

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 3

Predev to Intersection

Hydrograph type	= Combine	Peak discharge	= 4.906 cfs
Storm frequency	= 1 yrs	Time to peak	= 736 min
Time interval	= 2 min	Hyd. volume	= 37,807 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 35.400 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

lyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	4.002	2	734	26,520				Predev DA to Quarry Road
2	SCS Runoff	9.282	2	736	49,595				Predev DA to Dolington Road
3	Combine	13.27	2	734	76,115	1, 2			Predev to Intersection
4	SCS Runoff	2.070	2	738	14,751				Postdev Bypass DA to Quarry Road
5	SCS Runoff	16.63	2	736	84,777				Postdev to Detention Basin
6	SCS Runoff	0.526	2	730	2,498				Postdev Bypass Flow to Dolington Ro
7	Reservoir	2.849	2	790	79,181	5	162.19	31,099	DetentionBasin Outflow
8	Combine	4.858	2	746	96,430	4, 6, 7			Postdev to Intersection
10	Reservoir	0.392	2	1460	53,800	5	163.26	71,705	Sediment Basin
Bas	sin design.gp	W			Return	Period: 2 Y	ear	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

Predev DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 4.002 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 26,520 cuft
Drainage area	= 16.800 ac	Curve number	= 59
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.10 min
Total precip.	= 3.36 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 2

Predev DA to Dolington Road

Hydrograph type	= SCS Runoff	Peak discharge	= 9.282 cfs
Storm frequency	= 2 yrs	Time to peak	= 736 min
Time interval	= 2 min	Hyd. volume	= 49,595 cuft
Drainage area	= 18.600 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 31.20 min
Total precip.	= 3.36 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

11

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 3

Predev to Intersection

Hydrograph type	= Combine	Peak discharge	= 13.27 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 76,115 cuft
Inflow hyds.	= 1,2	Contrib. drain. area	= 35.400 ac

12

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	10.45	2	734	52,999				Predev DA to Quarry Road
2	SCS Runoff	18.50	2	734	87,644				Predev DA to Dolington Road
3	Combine	28.95	2	734	140,643	1, 2			Predev to Intersection
4	SCS Runoff	5.120	2	738	28,851				Postdev Bypass DA to Quarry Road
5	SCS Runoff	29.87	2	736	142,177				Postdev to Detention Basin
6	SCS Runoff	1.111	2	730	4,549				Postdev Bypass Flow to Dolington Ro
7	Reservoir	7.914	2	770	131,400	5	162.86	56,558	DetentionBasin Outflow
8	Combine	10.17	2	766	164,800	4, 6, 7			Postdev to Intersection
10	Reservoir	1.417	2	1072	107,139	5	164.06	103,042	Sediment Basin
Bag	sin design.gp	W			Return F	Period: 5 Ye	ar	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

Predev DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 10.45 cfs
Storm frequency	= 5 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 52,999 cuft
Drainage area	= 16.800 ac	Curve number	= 59
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.10 min
Total precip.	= 4.32 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

14

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 2

Predev DA to Dolington Road

Hydrograph type	= SCS Runoff	Peak discharge	= 18.50 cfs
Storm frequency	= 5 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 87,644 cuft
Drainage area	= 18.600 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 31.20 min
Total precip.	= 4.32 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 3

Predev to Intersection

Hydrograph type	= Combine	Peak discharge	= 28.95 cfs
Storm frequency Time interval	= 5 yrs = 2 min	Time to peak Hyd. volume	= 734 min = 140,643 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 35.400 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	18.86	2	732	85,143				Predev DA to Quarry Road
2	SCS Runoff	29.05	2	734	131,325				Predev DA to Dolington Road
3	Combine	47.69	2	734	216,468	1, 2			Predev to Intersection
4	SCS Runoff	9.025	2	736	45,822				Postdev Bypass DA to Quarry Road
5	SCS Runoff	44.54	2	736	206,368				Postdev to Detention Basin
6	SCS Runoff	1.789	2	730	6,938				Postdev Bypass Flow to Dolington Ro
7	Reservoir	23.56	2	758	193,132	5	163.21	69,937	DetentionBasin Outflow
8	Combine	29.71	2	754	245,892	4, 6, 7			Postdev to Intersection
10	Reservoir	5.374	2	812	171,233	5	164.26	115,142	Sediment Basin
Bas	sin design.gp	w		1	Return F	Period: 10 \	/ear	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

Predev DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 18.86 cfs
Storm frequency	= 10 yrs	Time to peak	= 732 min
Time interval	= 2 min	Hyd. volume	= 85,143 cuft
Drainage area	= 16.800 ac	Curve number	= 59
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.10 min
Total precip.	= 5.28 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 2

Predev DA to Dolington Road

Peak discharge	= 29.05 cfs
Time to peak	= 734 min
Hyd. volume	= 131,325 cuft
Curve number	= 66
Hydraulic length	= 0 ft
Time of conc. (Tc)	= 31.20 min
Distribution	= Type II
Shape factor	= 484
	Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 3

Predev to Intersection

Hydrograph type Storm frequency	= Combine = 10 yrs	Peak discharge Time to peak	= 47.69 cfs = 734 min
Time interval	$= 2 \min$	Hyd. volume	= 216,468 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 35.400 ac

20

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

lyd. Io.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	28.40	2	732	121,583				Predev DA to Quarry Road
2	SCS Runoff	40.49	2	734	179,073				Predev DA to Dolington Road
3	Combine	68.65	2	732	300,655	1, 2			Predev to Intersection
4	SCS Runoff	13.44	2	736	64,950				Postdev Bypass DA to Quarry Road
5	SCS Runoff	60.15	2	736	275,325				Postdev to Detention Basin
6	SCS Runoff	2.531	2	730	9,575				Postdev Bypass Flow to Dolington Ro
7	Reservoir	37.63	2	754	259,891	5	163.54	82,182	DetentionBasin Outflow
3	Combine	48.35	2	748	334,416	4, 6, 7			Postdev to Intersection
10	Reservoir	21.48	2	764	240,116	5	164.55	132,035	Sediment Basin
Basin design.gpw					Return F	Return Period: 25 Year			/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

Predev DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 28.40 cfs
Storm frequency	= 25 yrs	Time to peak	= 732 min
Time interval	= 2 min	Hyd. volume	= 121,583 cuft
Drainage area	= 16.800 ac	Curve number	= 59
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.10 min
Total precip.	= 6.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 2

Predev DA to Dolington Road

Hydrograph type	= SCS Runoff	Peak discharge	= 40.49 cfs
Storm frequency	= 25 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 179,073 cuft
Drainage area	= 18.600 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 31.20 min
Total precip.	= 6.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

23

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 3

Predev to Intersection

Hydrograph type	= Combine	Peak discharge	= 68.65 cfs
Storm frequency	= 25 yrs	Time to peak	= 732 min
Time interval	= 2 min	Hyd. volume	= 300,655 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 35.400 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description	
1	SCS Runoff	38.74	2	732	161,349				Predev DA to Quarry Road	
2	SCS Runoff	52.56	2	734	229,853				Predev DA to Dolington Road	
3	Combine	91.14	2	732	391,201	1, 2			Predev to Intersection	
4	SCS Runoff	18.21	2	736	85,739				Postdev Bypass DA to Quarry Road	
5	SCS Runoff	76.42	2	734	347,759				Postdev to Detention Basin	
6	SCS Runoff	3.319	2	728	12,398				Postdev Bypass Flow to Dolington Ro	
7	Reservoir	48.89	2	752	330,285	5	163.95	97,741	DetentionBasin Outflow	
8	Combine	64.02	2	746	428,422	4, 6, 7			Postdev to Intersection	
10	Reservoir	49.63	2	752	312,487	5	164.71	140,946	Sediment Basin	
Basin design.gpw					Return F	Return Period: 50 Year			Friday, 07 / 14 / 2017	

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

Predev DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 38.74 cfs
Storm frequency	= 50 yrs	Time to peak	= 732 min
Time interval	= 2 min	Hyd. volume	= 161,349 cuft
Drainage area	= 16.800 ac	Curve number	= 59
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.10 min
Total precip.	= 7.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 2

Predev DA to Dolington Road

Hydrograph type	= SCS Runoff	Peak discharge	= 52.56 cfs
Storm frequency	= 50 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 229,853 cuft
Drainage area	= 18.600 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 31.20 min
Total precip.	= 7.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 3

Predev to Intersection

Hydrograph type Storm frequency	= Combine = 50 yrs	Peak discharge Time to peak	= 91.14 cfs = 732 min
Time interval	= 2 min	Hyd. volume	= 391,201 cuft
Inflow hyds.	= 1,2	Contrib. drain. area	= 35.400 ac

28

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	52.51	2	732	214,688				Predev DA to Quarry Road
2	SCS Runoff	68.27	2	734	296,529				Predev DA to Dolington Road
3	Combine	120.75	2	732	511,218	1, 2			Predev to Intersection
4	SCS Runoff	24.55	2	736	113,531				Postdev Bypass DA to Quarry Road
5	SCS Runoff	97.50	2	734	441,899				Postdev to Detention Basin
6	SCS Runoff	4.364	2	728	16,126				Postdev Bypass Flow to Dolington Ro
7	Reservoir	56.99	2	754	422,212	5	164.42	124,298	DetentionBasin Outflow
8	Combine	78.49	2	740	551,870	4, 6, 7			Postdev to Intersection
10	Reservoir	81.20	2	744	406,561	5	164.83	148,276	Sediment Basin
Bas	sin design.gp	 w			Return F	Period: 100	Year	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

Predev DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 52.51 cfs
Storm frequency	= 100 yrs	Time to peak	= 732 min
Time interval	= 2 min	Hyd. volume	= 214,688 cuft
Drainage area	= 16.800 ac	Curve number	= 59
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 27.10 min
Total precip.	= 8.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 2

Predev DA to Dolington Road

Hydrograph type	= SCS Runoff	Peak discharge	= 68.27 cfs
Storm frequency	= 100 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 296,529 cuft
Drainage area	= 18.600 ac	Curve number	= 66
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 31.20 min
Total precip.	= 8.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 3

Predev to Intersection

Hydrograph type Storm frequency	= Combine = 100 yrs	Peak discharge Time to peak	= 120.75 cfs = 732 min
Time interval	= 2 min	Hyd. volume	= 511,218 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 35.400 ac

Hydraflow Table of Contents

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Watershed Model Schematic	1
Hydrograph Return Period Recap	2

1 - Year	
----------	--

ę	Summary Report	3
	Hydrograph Reports	
	Hydrograph No. 1, SCS Runoff, Predev DA to Quarry Road	4
	TR-55 Tc Worksheet	5
	Hydrograph No. 2, SCS Runoff, Predev DA to Dolington Road	6
	TR-55 Tc Worksheet	7
	Hydrograph No. 3, Combine, Predev to Intersection	. 8

2 - Year

Summary Report	. 9
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Predev DA to Quarry Road	
Hydrograph No. 2, SCS Runoff, Predev DA to Dolington Road	
Hydrograph No. 3, Combine, Predev to Intersection	

5 - Year

Summary Report	13
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Predev DA to Quarry Road	
Hydrograph No. 2, SCS Runoff, Predev DA to Dolington Road	
Hydrograph No. 3, Combine, Predev to Intersection	

10 - Year

Summary Report	17
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Predev DA to Quarry Road	
Hydrograph No. 2, SCS Runoff, Predev DA to Dolington Road	
Hydrograph No. 3, Combine, Predev to Intersection	

25 - Year

Summary Report	. 21
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Predev DA to Quarry Road	
Hydrograph No. 2, SCS Runoff, Predev DA to Dolington Road	
Hydrograph No. 3, Combine, Predev to Intersection	

50 - Year

Summary Report	. 25
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Predev DA to Quarry Road	
Hydrograph No. 2, SCS Runoff, Predev DA to Dolington Road	. 27
Hydrograph No. 3, Combine, Predev to Intersection	

100 - Year Summary Boport

29
30
30
31
32

POST-DEVELOPMENT DRAINAGE CALCULATIONS

Watershed Model Schematic

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hydrograph Return Period Recap Hydrafiow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

	Hydrograph		Peak Outflow (cfs)								Hydrograph
lo.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		1.010	4.002		10.45	18.86	28.40	38.74	52.51	Predev DA to Quarry Road
2	SCS Runoff		3.939	9.282		18.50	29.05	40.49	52.56	68.27	Predev DA to Dolington Road
3	Combine	1, 2	4.906	13.27		28.95	47.69	68.65	91.14	120.75	Predev to Intersection
4	SCS Runoff		0.596	2.070		5.120	9.025	13.44	18.21	24.55	Postdev Bypass DA to Quarry Road
5	SCS Runoff		8.247	16.63		29.87	44.54	60.15	76.42	97.50	Postdev to Detention Basin
6	SCS Runoff		0.200	0.526		1.111	1.789	2.531	3.319	4.364	Postdev Bypass Flow to Dolington Ro
7	Reservoir	5	2.134	2.849		7.914	23.56	37.63	48.89	56.99	DetentionBasin Outflow
8	Combine	4, 6, 7	2.673	4.858		10.17	29.71	48.35	64.02	78.49	Postdev to Intersection
10	Reservoir	5	0.146	0.392		1.417	5.374	21.48	49.63	81.20	Sediment Basin
	1	1	1	1	1	1	1	1	1	1	1

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	1.010	2	744	11,616				Predev DA to Quarry Road
2	SCS Runoff	3.939	2	736	26,190				Predev DA to Dolington Road
3	Combine	4.906	2	736	37,807	1, 2			Predev to Intersection
4	SCS Runoff	0.596	2	748	6,683				Postdev Bypass DA to Quarry Road
5	SCS Runoff	8.247	2	738	48,117				Postdev to Detention Basin
6	SCS Runoff	0.200	2	732	1,263				Postdev Bypass Flow to Dolington Ro
7	Reservoir	2.134	2	780	46,021	5	161.11	13,460	DetentionBasin Outflow
8	Combine	2.673	2	760	53,967	4, 6, 7			Postdev to Intersection
10	Reservoir	0.146	2	1468	21,337	5	162.53	44,051	Sediment Basin
Bag	sin design.gp				Return	Period: 1 Y	ear	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 4

Postdev Bypass DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 0.596 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.47 hrs
Time interval	= 2 min	Hyd. volume	= 6,683 cuft
Drainage area	= 8.700 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.80 min
Total precip.	= 2.64 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

4

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 4

Postdev Bypass DA to Quarry Road

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.400 = 150.0 = 3.36 = 2.67		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 25.82	+	0.00	+	0.00	=	25.82
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 580.00 = 3.60 = Unpaved =3.06	ł	1260.00 2.30 Paved 3.08		0.00 0.00 Paved 0.00		
Travel Time (min)	= 3.16	+	6.81	+	0.00	=	9.97
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc						35.80 min	

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 5

Postdev to Detention Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 8.247 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.30 hrs
Time interval	= 2 min	Hyd. volume	= 48,117 cuft
Drainage area	= 25.600 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 36.30 min
Total precip.	= 2.64 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

6

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 5

Postdev to Detention Basin

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.400 = 150.0 = 3.36 = 2.20		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 27.90	+	0.00	+	0.00	=	27.90
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 660.00 = 1.70 = Unpaved =2.10	t	250.00 0.60 Paved 1.57		65.00 1.50 Unpave 1.98	ed	
Travel Time (min)	= 5.23	+	2.65	+	0.55	=	8.42
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 6

Postdev Bypass Flow to Dolington Road

Hydrograph type	= SCS Runoff	Peak discharge	= 0.200 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.20 hrs
Time interval	= 2 min	Hyd. volume	= 1,263 cuft
Drainage area	= 1.100 ac	Curve number	= 64
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 24.90 min
Total precip.	= 2.64 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

8

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 6

Postdev Bypass Flow to Dolington Road

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.400 = 150.0 = 3.36 = 3.60		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 22.91	+	0.00	+	0.00	=	22.91
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 400.00 = 4.40 = Unpaved =3.38	ł	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 1.97	+	0.00	+	0.00	=	1.97
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)					0.0		
	({0})0.0		0.0		0.0		
Travel Time (min)	({0})0.0 = 0.00	+	0.0 0.00	+	0.0 0.00	=	0.00

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 7

DetentionBasin Outflow

Hydrograph type Storm frequency Time interval Inflow hyd. No. Reservoir name	 Reservoir 1 yrs 2 min 5 - Postdev to Detention Basic Basin No. 1 		= 2.134 cfs = 13.00 hrs = 46,021 cuft = 161.11 ft = 13.460 cuft
Reservoir name	= Basin No. 1	Max. Storage	= 13,460 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

10

Pond Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Pond No. 1 - Basin No. 1

Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 159.50 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	159.50	00	0	0	
0.50	160.00	1,543	386	386	
2.50	162.00	22,000	23,543	23,929	
4.50	164.00	53,882	75,882	99,811	
6.50	166.00	62,428	116,310	216,121	

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 36.00	6.00	8.00	0.00	Crest Len (ft)	= 12.00	100.00	Inactive	Inactive
Span (in)	= 36.00	6.00	45.00	0.00	Crest El. (ft)	= 164.00	164.50	0.00	0.00
No. Barrels	= 1	2	4	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 159.30	159.50	162.66	0.00	Weir Type	= 1	Broad	Rect	Rect
Length (ft)	= 45.00	0.00	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 2.89	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.500 (by	Contour)		
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00			

Weir Structures

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

11

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 8

Postdev to Intersection

Hydrograph type	= Combine	Peak discharge	= 2.673 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.67 hrs
Time interval	= 2 min	Hyd. volume	= 53,967 cuft
Inflow hyds.	= 4, 6, 7	Contrib. drain. area	= 9.800 ac

3D® 2015 by Autodesk Inc. v10 1

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	4.002	2	734	26,520				Predev DA to Quarry Road
2	SCS Runoff	9.282	2	736	49,595				Predev DA to Dolington Road
3	Combine	13.27	2	734	76,115	1, 2			Predev to Intersection
4	SCS Runoff	2.070	2	738	14,751				Postdev Bypass DA to Quarry Road
5	SCS Runoff	16.63	2	736	84,777				Postdev to Detention Basin
6	SCS Runoff	0.526	2	730	2,498				Postdev Bypass Flow to Dolington Ro
7	Reservoir	2.849	2	790	79,181	5	162.19	31,099	DetentionBasin Outflow
8	Combine	4.858	2	746	96,430	4, 6, 7			Postdev to Intersection
10	Reservoir	0.392	2	1460	53,800	5	163.26	71,705	Sediment Basin
Bag	sin design.gp				Return	Period: 2 Ye	ar	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 4

Postdev Bypass DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 2.070 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.30 hrs
Time interval	= 2 min	Hyd. volume	= 14,751 cuft
Drainage area	= 8.700 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.80 min
Total precip.	= 3.36 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 5

Postdev to Detention Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 16.63 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 84,777 cuft
Drainage area	= 25.600 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 36.30 min
Total precip.	= 3.36 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 6

Postdev Bypass Flow to Dolington Road

Hydrograph type	= SCS Runoff	Peak discharge	= 0.526 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 2,498 cuft
Drainage area	= 1.100 ac	Curve number	= 64
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 24.90 min
Total precip.	= 3.36 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 7

DetentionBasin Outflow

Hydrograph type Storm frequency Time interval Inflow hyd. No.	 Reservoir 2 yrs 2 min 5 - Postdev to Detention Basi 		= 2.849 cfs = 13.17 hrs = 79,181 cuft = 162.19 ft
Reservoir name	= Basin No. 1	Max. Storage	= 31,099 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 8

Postdev to Intersection

Hydrograph type	= Combine	Peak discharge	= 4.858 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.43 hrs
Time interval	= 2 min	Hyd. volume	= 96,430 cuft
Inflow hyds.	= 4, 6, 7	Contrib. drain. area	= 9.800 ac

18

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	10.45	2	734	52,999				Predev DA to Quarry Road
2	SCS Runoff	18.50	2	734	87,644				Predev DA to Dolington Road
3	Combine	28.95	2	734	140,643	1, 2			Predev to Intersection
4	SCS Runoff	5.120	2	738	28,851				Postdev Bypass DA to Quarry Road
5	SCS Runoff	29.87	2	736	142,177				Postdev to Detention Basin
6	SCS Runoff	1.111	2	730	4,549				Postdev Bypass Flow to Dolington Ro
7	Reservoir	7.914	2	770	131,400	5	162.86	56,558	DetentionBasin Outflow
8	Combine	10.17	2	766	164,800	4, 6, 7			Postdev to Intersection
10	Reservoir	1.417	2	1072	107,139	5	164.06	103,042	Sediment Basin
Bas	sin design.gp	w		1	Return F	Period: 5 Ye	ear	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 4

Postdev Bypass DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 5.120 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.30 hrs
Time interval	= 2 min	Hyd. volume	= 28,851 cuft
Drainage area	= 8.700 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.80 min
Total precip.	= 4.32 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 5

Postdev to Detention Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 29.87 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 142,177 cuft
Drainage area	= 25.600 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 36.30 min
Total precip.	= 4.32 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 6

Postdev Bypass Flow to Dolington Road

= SCS Runoff	Peak discharge	= 1.111 cfs
= 5 yrs	Time to peak	= 12.17 hrs
= 2 min	Hyd. volume	= 4,549 cuft
= 1.100 ac	Curve number	= 64
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 24.90 min
= 4.32 in	Distribution	= Type II
= 24 hrs	Shape factor	= 484
	= 5 yrs = 2 min = 1.100 ac = 0.0 % = TR55 = 4.32 in	= 5 yrsTime to peak= 2 minHyd. volume= 1.100 acCurve number= 0.0 %Hydraulic length= TR55Time of conc. (Tc)= 4.32 inDistribution

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 7

DetentionBasin Outflow

= 12.83 hrs = 131,400 cuft
= 162.86 ft = 56,558 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 8

Postdev to Intersection

Hydrograph type	= Combine	Peak discharge	= 10.17 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.77 hrs
Time interval	= 2 min	Hyd. volume	= 164,800 cuft
Inflow hyds.	= 4, 6, 7	Contrib. drain. area	= 9.800 ac

24

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	18.86	2	732	85,143				Predev DA to Quarry Road
2	SCS Runoff	29.05	2	734	131,325				Predev DA to Dolington Road
3	Combine	47.69	2	734	216,468	1, 2			Predev to Intersection
4	SCS Runoff	9.025	2	736	45,822				Postdev Bypass DA to Quarry Road
5	SCS Runoff	44.54	2	736	206,368				Postdev to Detention Basin
6	SCS Runoff	1.789	2	730	6,938				Postdev Bypass Flow to Dolington Ro
7	Reservoir	23.56	2	758	193,132	5	163.21	69,937	DetentionBasin Outflow
8	Combine	29.71	2	754	245,892	4, 6, 7			Postdev to Intersection
10	Reservoir	5.374	2	812	171,233	5	164.26	115,142	Sediment Basin
Bas	sin design.gp	 w			Return F	Period: 10 `	Year	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 4

Postdev Bypass DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 9.025 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 45,822 cuft
Drainage area	= 8.700 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.80 min
Total precip.	= 5.28 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

26

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 5

Postdev to Detention Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 44.54 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 206,368 cuft
Drainage area	= 25.600 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 36.30 min
Total precip.	= 5.28 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 6

Postdev Bypass Flow to Dolington Road

Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method	 SCS Runoff 10 yrs 2 min 1.100 ac 0.0 % TR55 	Peak discharge Time to peak Hyd. volume Curve number Hydraulic length Time of conc. (Tc)	 1.789 cfs 12.17 hrs 6,938 cuft 64 0 ft 24.90 min
Drainage area	= 1.100 ac	Curve number	= 64
5	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 24.90 min
Total precip.	= 5.28 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 7

DetentionBasin Outflow

Hydrograph type Storm frequency Time interval Inflow hyd. No.	 Reservoir 10 yrs 2 min 5 - Postdev to Detention Basic 		= 23.56 cfs = 12.63 hrs = 193,132 cuft = 163.21 ft
Reservoir name	= Basin No. 1	Max. Storage	= 69,937 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

29

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 8

Postdev to Intersection

Hydrograph type	= Combine	Peak discharge	= 29.71 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.57 hrs
Time interval	= 2 min	Hyd. volume	= 245,892 cuft
Inflow hyds.	= 4, 6, 7	Contrib. drain. area	= 9.800 ac

30

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

SCS Runoff SCS Runoff Combine SCS Runoff	28.40 40.49	2				(ft)	(cuft)	
Combine	40.49		732	121,583				Predev DA to Quarry Road
		2	734	179,073				Predev DA to Dolington Road
SCS Runoff	68.65	2	732	300,655	1, 2			Predev to Intersection
	13.44	2	736	64,950				Postdev Bypass DA to Quarry Road
SCS Runoff	60.15	2	736	275,325				Postdev to Detention Basin
SCS Runoff	2.531	2	730	9,575				Postdev Bypass Flow to Dolington Ro
Reservoir	37.63	2	754	259,891	5	163.54	82,182	DetentionBasin Outflow
Combine	48.35	2	748	334,416	4, 6, 7			Postdev to Intersection
Reservoir	21.48	2	764	240,116	5	164.55	132,035	Sediment Basin
	Combine Reservoir	Combine 48.35	Combine 48.35 2 Reservoir 21.48 2	Combine 48.35 2 748 Reservoir 21.48 2 764	Combine 48.35 2 748 334,416 Reservoir 21.48 2 764 240,116	Combine 48.35 2 748 334,416 4, 6, 7 Reservoir 21.48 2 764 240,116 5	Combine 48.35 2 748 334,416 4, 6, 7 Reservoir 21.48 2 764 240,116 5 164.55 Image: Servoir 21.48 2 764 240,116 5 164.55 Image: Servoir 21.48 2 764 240,116 5 164.55 Image: Servoir 1mage: Servoir	Combine 48.35 2 748 334.416 4, 6, 7 Reservoir 21.48 2 764 240,116 5 164.55 132,035 Image: servoir 21.48 2 764 240,116 5 164.55 132,035

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 4

Postdev Bypass DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 13.44 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 64,950 cuft
Drainage area	= 8.700 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.80 min
Total precip.	= 6.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 5

Postdev to Detention Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 60.15 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 275,325 cuft
Drainage area	= 25.600 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 36.30 min
Total precip.	= 6.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 6

Postdev Bypass Flow to Dolington Road

Hydrograph type Storm frequency	= SCS Runoff = 25 yrs	Peak discharge Time to peak	= 2.531 cfs = 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 9,575 cuft
Drainage area	= 1.100 ac	Curve number	= 64
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 24.90 min
Total precip.	= 6.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

34

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 7

DetentionBasin Outflow

Hydrograph type	= Reservoir	Peak discharge	= 37.63 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.57 hrs
Time interval	= 2 min	Hyd. volume	= 259,891 cuft
Inflow hyd. No.	= 5 - Postdev to Detention Bas= Basin No. 1	inMax. Elevation	= 163.54 ft
Reservoir name		Max. Storage	= 82,182 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

35

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 8

Postdev to Intersection

Hydrograph type	= Combine	Peak discharge	= 48.35 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.47 hrs
Time interval	= 2 min	Hyd. volume	= 334,416 cuft
Inflow hyds.	= 4, 6, 7	Contrib. drain. area	= 9.800 ac

Friday, 07 / 14 / 2017

36

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	38.74	2	732	161,349				Predev DA to Quarry Road
2	SCS Runoff	52.56	2	734	229,853				Predev DA to Dolington Road
3	Combine	91.14	2	732	391,201	1, 2			Predev to Intersection
4	SCS Runoff	18.21	2	736	85,739				Postdev Bypass DA to Quarry Road
5	SCS Runoff	76.42	2	734	347,759				Postdev to Detention Basin
6	SCS Runoff	3.319	2	728	12,398				Postdev Bypass Flow to Dolington Ro
7	Reservoir	48.89	2	752	330,285	5	163.95	97,741	DetentionBasin Outflow
8	Combine	64.02	2	746	428,422	4, 6, 7			Postdev to Intersection
10	Reservoir	49.63	2	752	312,487	5	164.71	140,946	Sediment Basin
Bas	sin design.gp	w			Return F	Period: 50 \	Year	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 4

Postdev Bypass DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 18.21 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 85,739 cuft
Drainage area	= 8.700 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.80 min
Total precip.	= 7.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 5

Postdev to Detention Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 76.42 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.23 hrs
Time interval	= 2 min	Hyd. volume	= 347,759 cuft
Drainage area	= 25.600 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 36.30 min
Total precip.	= 7.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 6

Postdev Bypass Flow to Dolington Road

Hydrograph type	= SCS Runoff	Peak discharge	= 3.319 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 12,398 cuft
Drainage area	= 1.100 ac	Curve number	= 64
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 24.90 min
Total precip.	= 7.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

40

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 7

DetentionBasin Outflow

Hydrograph type	 Reservoir 50 yrs 2 min 5 - Postdev to Detention Basic 	Peak discharge	= 48.89 cfs
Storm frequency		Time to peak	= 12.53 hrs
Time interval		Hyd. volume	= 330,285 cuft
Inflow hyd. No.		inMax. Elevation	= 163.95 ft
Inflow hyd. No.	= 5 - Postdev to Detention Bas= Basin No. 1	INMax. Elevation	= 163.95 ft
Reservoir name		Max. Storage	= 97,741 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 8

Postdev to Intersection

Hydrograph type	= Combine	Peak discharge	= 64.02 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.43 hrs
Time interval	= 2 min	Hyd. volume	= 428,422 cuft
Inflow hyds.	= 4, 6, 7	Contrib. drain. area	= 9.800 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	52.51	2	732	214,688				Predev DA to Quarry Road
2	SCS Runoff	68.27	2	734	296,529				Predev DA to Dolington Road
3	Combine	120.75	2	732	511,218	1, 2			Predev to Intersection
4	SCS Runoff	24.55	2	736	113,531				Postdev Bypass DA to Quarry Road
5	SCS Runoff	97.50	2	734	441,899				Postdev to Detention Basin
6	SCS Runoff	4.364	2	728	16,126				Postdev Bypass Flow to Dolington Ro
7	Reservoir	56.99	2	754	422,212	5	164.42	124,298	DetentionBasin Outflow
8	Combine	78.49	2	740	551,870	4, 6, 7			Postdev to Intersection
10	Reservoir	81.20	2	744	406,561	5	164.83	148,276	Sediment Basin
Bas	sin design.gp	w			Return F	Period: 100	Year	Friday, 07	/ 14 / 2017

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 4

Postdev Bypass DA to Quarry Road

Hydrograph type	= SCS Runoff	Peak discharge	= 24.55 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 113,531 cuft
Drainage area	= 8.700 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 35.80 min
Total precip.	= 8.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 5

Postdev to Detention Basin

Hydrograph type	= SCS Runoff	Peak discharge	= 97.50 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.23 hrs
Time interval	= 2 min	Hyd. volume	= 441,899 cuft
Drainage area	= 25.600 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 36.30 min
Total precip.	= 8.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 6

Postdev Bypass Flow to Dolington Road

Hydrograph type	= SCS Runoff	Peak discharge	= 4.364 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 16,126 cuft
Drainage area	= 1.100 ac	Curve number	= 64
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 24.90 min
Total precip.	= 8.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 7

DetentionBasin Outflow

Storm frequency =	 Reservoir 100 yrs 2 min 5 - Postdev to Detention Basing 	Peak discharge Time to peak Hyd. volume nMax. Elevation	= 56.99 cfs = 12.57 hrs = 422,212 cuft = 164.42 ft
5	5 - Postdev to Detention BasinBasin No. 1	nMax. Elevation Max. Storage	= 164.42 ft = 124,298 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

47

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 8

Postdev to Intersection

Hydrograph type	= Combine	Peak discharge	= 78.49 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.33 hrs
Time interval	= 2 min	Hyd. volume	= 551,870 cuft
Inflow hyds.	= 4, 6, 7	Contrib. drain. area	= 9.800 ac

Hydraflow Table of Contents

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Watershed Model Schematic	1
Hydrograph Return Period Recap	2

1 - Year

Summary Report	3
Hydrograph Reports	
Hydrograph No. 4, SCS Runoff, Postdev Bypass DA to Quarry Road	
TR-55 Tc Worksheet	5
Hydrograph No. 5, SCS Runoff, Postdev to Detention Basin	6
TR-55 Tc Worksheet	7
Hydrograph No. 6, SCS Runoff, Postdev Bypass Flow to Dolington Road	8
TR-55 Tc Worksheet	9
Hydrograph No. 7, Reservoir, DetentionBasin Outflow	0
Pond Report - Basin No. 1 1	1
Hydrograph No. 8, Combine, Postdev to Intersection	2

2 - Year

Summary Report	13
Hydrograph Reports	
Hydrograph No. 4, SCS Runoff, Postdev Bypass DA to Quarry Road	
Hydrograph No. 5, SCS Runoff, Postdev to Detention Basin	
Hydrograph No. 6, SCS Runoff, Postdev Bypass Flow to Dolington Road	
Hydrograph No. 7, Reservoir, DetentionBasin Outflow	
Hydrograph No. 8, Combine, Postdev to Intersection	18

5 - Year

Summary Report	19
lydrograph Reports	
Hydrograph No. 4, SCS Runoff, Postdev Bypass DA to Quarry Road	
Hydrograph No. 5, SCS Runoff, Postdev to Detention Basin	21
Hydrograph No. 6, SCS Runoff, Postdev Bypass Flow to Dolington Road	22
Hydrograph No. 7, Reservoir, DetentionBasin Outflow	23
Hydrograph No. 8, Combine, Postdev to Intersection	24

10 - Year

Summary Report	25
Hydrograph Reports	
Hydrograph No. 4, SCS Runoff, Postdev Bypass DA to Quarry Road	
Hydrograph No. 5, SCS Runoff, Postdev to Detention Basin	
Hydrograph No. 6, SCS Runoff, Postdev Bypass Flow to Dolington Road	
Hydrograph No. 7, Reservoir, DetentionBasin Outflow	
Hydrograph No. 8, Combine, Postdev to Intersection	

25 - Year

Summary Report	31
Hydrograph Reports	
Hydrograph No. 4, SCS Runoff, Postdev Bypass DA to Quarry Road	

Hydrograph No. 5, SCS Runoff, Postdev to Detention Basin
Hydrograph No. 6, SCS Runoff, Postdev Bypass Flow to Dolington Road
Hydrograph No. 7, Reservoir, DetentionBasin Outflow
Hydrograph No. 8, Combine, Postdev to Intersection

50 - Year

Summary Report	37
Hydrograph Reports	38
Hydrograph No. 4, SCS Runoff, Postdev Bypass DA to Quarry Road	
Hydrograph No. 5, SCS Runoff, Postdev to Detention Basin	. 39
Hydrograph No. 6, SCS Runoff, Postdev Bypass Flow to Dolington Road	. 40
Hydrograph No. 7, Reservoir, DetentionBasin Outflow	41
Hydrograph No. 8, Combine, Postdev to Intersection	42

100 - Year

43
44
44
45
46
47
48

STORM SEWER

RIPRAP

DESIGN CALCULATIONS

STANDARD E&S WORKSHEET # 20 Riprap Apron Outlet Protection

	Snipes Tract Athletic Fields		
LOCATION: Dolin	ngton Road and Quarry Road, Lower Makefield Town	ship, Bucks	s County, PA
PREPARED BY:	Maryellen Saylor, P.E.	DATE:	November 18, 2016, Revised June 7, 2017
CHECKED BY:	Mark Eisold, P.E.	DATE:	November 18, 2016, Revised June 7, 2017

PLAN VIEW

SECTION A - A

NO.	PIPE DIA. Do (in.)	TAIL WATER COND. (Max or Min)	MAN. "n" FOR PIPE	PIPE SLOPE (FT/FT)	Q (CFS)	V* (FPS)	RIPRAP SIZE	Rt (in)	AI (ft)	Aiw (ft)	Atw (ft)
EW #1	24"	Min.	0.011	0.0463	40.2	12.8	R-6	36"	22	6	22
EW #2	18"	Min.	0.011	0.0100	12.7	7.0	R-4	18"	12	5	13
EW #3	36"	Min.	0.012	0.0289	57.0	8.1	R-5	27"	20	9	24

*:The anticipated velocity (V) should not exceed the maximum permissible shown in Table 6.6 for the proposed riprap protection. Adjust for less than full pipe flow. Use Manning's equation to calculate velocity for pipe slopes ≥ 0.05 ft/ft.

Structure/ Facility	Soil Type	Ground Slope	Grass	С	Woods	С	Impervious	С	Total Area (SF)	Total Area AC	Weighted C
Basin	В	2-6%	112,269	0.19	-		9,920	0.96	122,189	2.805	0.25
Inlet 1	В	2-6%	9,071	0.19	-		670	0.96	9,741	0.224	0.24
Inlet 2	В	2-6%	15,242	0.19	-		15,786	0.96	31,028	0.712	0.58
Inlet 3	В	2-6%	4,626	0.19	-		1,063	0.96	5,689	0.131	0.33
Inlet 4	В	2-6%	3,485	0.19	-		404	0.96	3,889	0.089	0.27
Inlet 5	С	2-6%	240	0.23	-		555	0.96	795	0.018	0.74
Inlet 6	С	2-6%	9,514	0.23	-		556	0.96	10,070	0.231	0.27
Inlet 7	С	2-6%	1,442	0.23	-		50	0.96	1,492	0.034	0.25
Inlet 8	С	2-6%	10,621	0.23	1,634	0.16	6,549	0.96	18,804	0.432	0.48
Inlet 9	С	0-2%	8,439	0.18	19,662	0.12	-		28,101	0.645	0.14
Inlet 10	С	0-2%	46,908	0.18	78,778	0.12	3,354	0.95	129,040	2.962	0.16
Inlet 11	В	0-2%	51,464	0.14	-		6,178	0.95	57,642	1.323	0.23
Inlet 12	В	0-2%	14,746	0.14	-		4,208	0.95	18,954	0.435	0.32
Inlet 13	В	0-2%	63,772	0.14	-		10,765	0.95	74,537	1.711	0.26
Inlet 14	В	0-2%	16,236	0.14	-		2,619	0.95	18,855	0.433	0.25
Inlet 15	В	0-2%	81,565	0.14	31,659	0.10	16,233	0.95	129,457	2.972	0.23
Inlet 16	В	0-2%	13,190	0.14	-		8,875	0.95	22,065	0.507	0.47
Inlet 17	В	0-2%	11,243	0.14	-		1,766	0.95	13,009	0.299	0.25
Inlet 18	В	2-6%	19,579	0.19	-		13,107	0.96	32,686	0.750	0.50
Inlet 19	В	0-2%	43,534	0.14	-		393	0.95	43,927	1.008	0.15
Inlet 20	В	0-2%	22,614	0.14	-		12,782	0.95	35,396	0.813	0.43
Inlet 21	В	0-2%	49,062	0.14	-		981	0.95	50,043	1.149	0.16
Inlet 22	В	2-6%	1,654	0.19	1,985	0.14	1,859	0.96	5,498	0.126	0.43
Inlet 23	В	0-2%	34,697	0.14	19,688	0.10	6,205	0.95	60,590	1.391	0.21
Inlet 24	В	2-6%	4,332	0.19	-		6,479	0.96	10,811	0.248	0.65
Inlet 25	В	2-6%	1,992	0.19	-		3,650	0.96	5,642	0.130	0.69
Inlet 26	В	0-2%	29,441	0.19	-		4,100	0.95	33,541	0.770	0.28
Inlet 27	С	0-2%	87,102	0.20	-		11,910		99,012	2.273	0.18
Inlet 28	С	0-2%	59,646	0.20		0.10	2,340	0.95	61,986	1.423	0.23
New Undetained I	mp	2-6%					11,167		11,167	0.256	0.00
TOTALS			827,726		153,406		164,524		1,145,656	26.301	

Total Impervious Undetained (Incl. Inlets 24 & 25) 21,296 sf

Impervious to Basin

143,228 sf

PROJECT : SNIPES TRACT

PROJECT No. 1677054L

DATE : 06/07/17

STORM PIPE COMPUTATION SHEET

CALC. BY: MES

SHEET: 1 OF 1

R	un		Drai	nage /	Area	Runoff					Pip	oe Data				Profile Data				
			Α			Time of	I		Cum.	Pipe	Pipe		Pipe	V	L		TG/Rim	Invert	Invert	
Locaton	From	То	Area	С	CA	Conc.	Inten.	Q	Q	Size	Slope	n	Cap.	Vel.	Length	Fall	Elev.(up)	Up	Down	
			(acres)			(min.)	(in.)	(cfs.)	(cfs)	(in.)	(ft/ft.)		(cfs.)	(ft/sec.)	(ft.)	(ft.)	(ft.)	(ft.)	(ft.)	
Inlet	23	22	1.391	0.21	0.29	5.00	8.40	2.5	2.5	18	0.0051	0.011	8.9	5.0	35	0.18	186.50	183.85	183.67	
Inlet	22	20	0.126	0.43	0.05	5.00	8.40	0.5	2.9	18	0.0100	0.011	12.4	7.0	309	3.10	187.50	183.50	180.40	
Inlet	21	20	1.149	0.16	0.18	5.00	8.40	1.5	1.5	18	0.0061	0.011	9.6		66	0.40	181.90	178.90	178.50	
Inlet	20	18	0.813	0.43	0.35	5.00	8.40	2.9	7.4	18	0.0099	0.011	12.3	7.0	313	3.10	183.15	177.00	173.90	
Inlet	19	18	1.008	0.15	0.15	5.00	8.40	1.3	1.3	18	0.0050	0.011	8.7	5.0	70	0.35	177.00	174.25	173.90	
Inlet	18	17	0.750	0.50	0.38	5.00	8.40	3.2	11.8	18	0.0095	0.011	12.0	6.8	95	0.90	176.70	173.70	172.80	
Inlet	17	16	0.299	0.25	0.07	5.00	8.40	0.6	12.4	18	0.0163	0.011	15.8		202	3.30	176.70	172.60	169.30	
Inlet	16	1	0.507	0.47	0.24	5.00	8.40	2.0	14.4	18	0.0171	0.011	16.2	9.2	35	0.60	172.50	169.10	168.50	
Inlet	15	14	2.972	0.23	0.68	5.00	8.40	5.7	5.7	18	0.0087	0.011	11.5	6.5	264	2.30	186.60	183.60	181.30	
Inlet	14	13	0.433	0.25	0.11	5.00	8.40	0.9	6.7	18	0.0661	0.011	31.8	18.0	28	1.85	185.50	181.10	179.25	
Inlet	13	12	1.711	0.26	0.44	5.00	8.40	3.7	10.4	18	0.0089	0.011	11.7	6.6	263	2.35	182.00	179.05	176.70	
Inlet	12	11	0.435	0.32	0.14	5.00	8.40	1.2	11.6	18	0.0321	0.011	22.2	12.5	39	1.25	181.00	176.00	174.75	
Inlet	11	6	1.323	0.23	0.30	5.00	8.40	2.6	14.1	24	0.0060	0.011	20.6	6.6	251	1.50	177.50	174.25	172.75	
Inlet	10	9	2.962	0.16	0.47	5.00	8.40	4.0	4.0	18	0.0050	0.011	8.7	5.0	87	0.45	177.50	174.90	174.45	
Inlet	9	8	0.645	0.14	0.09	5.00	8.40	0.8	4.7	18	0.0050	0.011	8.7	5.0	100	0.50	177.94	174.25	173.75	
Inlet	8	7	0.432	0.48	0.21	5.00	8.40	1.7	6.5	18	0.0050	0.011	8.7	5.0	62	0.31	177.51	173.55	173.24	
Inlet	7	6	0.034	0.25	0.01	5.00	8.40	0.1	6.6	18	0.0051	0.011	8.8	5.0	57	0.29	176.67	173.04	172.75	
Inlet	6	5	0.231	0.27	0.06	5.00	8.40	0.5	21.2	24	0.0063	0.011	21.1	6.7	78	0.49	176.97	172.75	172.26	
Inlet	5	4	0.018	0.74	0.01	5.00	8.40	0.1	21.3	24	0.0064	0.011	21.4	6.8	103	0.66		172.06	171.40	
Inlet	4	3	0.089	0.27	0.02	5.00	8.40	0.2	21.5	24	0.0066	0.011	21.7	6.9	100	0.66	175.50	171.20	170.54	
Inlet*	3	2	0.131	0.33	0.04	5.00	8.40	0.4	21.9	24	0.0067	0.011	21.9	-	221	1.49	175.25	170.54	169.05	
Inlet	2	1	0.712	0.58	0.41	5.00	8.40	3.5	25.3	24	0.0225	0.011	40.1	12.7	51	1.15	172.60	169.15	168.00	
Inlet	1	EW1	0.224	0.24	0.05	5.00	8.40	0.5	40.2	24	0.0463	0.011	57.4	18.3	54	2.50	172.50	167.50	165.00	
Inlet	28	27	1.423	0.23	0.33	5.00	8.40	2.7	2.7	18	0.0144	0.011	14.9	-	260	3.75	175.50	172.75	169.00	
Inlet*	27	26	2.273	0.18	0.41	5.00	8.40	3.4	6.2	18	0.0103	0.011	12.6	7.1	150	1.55	171.80	168.80	167.25	
Inlet*	26	EW2	0.770	0.28	0.22	5.00	8.40	1.8	8.0	18	0.0090	0.011	11.7	6.6	50	0.45	170.00	167.05	166.60	
Inlet	25	24	0.130	0.69	0.09	5.00	8.40	0.8	0.8	18	0.0194	0.011	17.2	9.8	35	0.68	164.00	161.00	160.32	

* Infiltration Trench

INFILTRATION/GEOTECHNICAL REPORT

SOIL INFILTRATION TEST PIT RESULTS

AbB-Abbottstown silt loam, 3 to 8 percent slopes

Map Unit Setting

- National map unit symbol: 17n4
- Elevation: 200 to 1,300 feet
- Mean annual precipitation: 36 to 50 inches
- Mean annual air temperature: 46 to 57 degrees F
- Frost-free period: 130 to 200 days
- Farmland classification: Farmland of statewide importance

Map Unit Composition

- Abbottstown and similar soils: 88 percent
- Minor components: 12 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Abbottstown

Setting

- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, toeslope
- Landform position (three-dimensional): Base slope, head slope
- *Down-slope shape:* Concave, linear
- Across-slope shape: Linear, concave
- *Parent material:* Acid reddish brown residuum weathered from shale and siltstone

Typical profile

- Ap 0 to 10 inches: silt loam
- Bt 10 to 20 inches: silt loam
- Bx 20 to 39 inches: channery loam
- BCg 39 to 48 inches: channery silt loam
- *R 48 to 49 inches:* bedrock

Properties and qualities

- *Slope:* 3 to 8 percent
- *Depth to restrictive feature:* 15 to 30 inches to fragipan; 40 to 60 inches to lithic bedrock
- Natural drainage class: Somewhat poorly drained
- Runoff class: Very high
- Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
- Depth to water table: About 6 to 18 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Low (about 3.7 inches) Interpretive groups
- Land capability classification (irrigated): None specified

- Land capability classification (nonirrigated): 3w
- Hydrologic Soil Group: D
- Hydric soil rating: No

Minor Components

Penn

- Percent of map unit: 5 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Summit, shoulder, backslope
- Landform position (three-dimensional): Interfluve, side slope, nose slope
- *Down-slope shape:* Linear, convex
- Across-slope shape: Linear, convex
- Hydric soil rating: No

Croton

- Percent of map unit: 5 percent
- Landform: Depressions
- Landform position (two-dimensional): Toeslope
- Landform position (three-dimensional): Base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: Yes

Klinesville

- Percent of map unit: 2 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Shoulder, summit
- Landform position (three-dimensional): Interfluve, nose slope
- Down-slope shape: Convex
- Across-slope shape: Convex
- Hydric soil rating: No

BwB-Buckingham silt loam, 3 to 8 percent slopes

Map Unit Setting

- National map unit symbol: I7nv
- Elevation: 150 to 900 feet
- Mean annual precipitation: 38 to 48 inches
- Mean annual air temperature: 45 to 57 degrees F
- Frost-free period: 150 to 210 days
- *Farmland classification:* Farmland of statewide importance

Map Unit Composition

- Buckingham and similar soils: 88 percent
- *Minor components:* 12 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Buckingham

Setting

- *Landform:* Drainageways
- Landform position (two-dimensional): Toeslope
- Landform position (three-dimensional): Head slope
- Down-slope shape: Concave, linear
- Across-slope shape: Concave, linear
- *Parent material:* Fine-loamy colluvium and old alluvium derived from shale and siltstone

Typical profile

- A 0 to 7 inches: silt loam
- Bt 7 to 30 inches: silt loam
- Btx1 30 to 44 inches: silty clay loam
- Btx2 44 to 70 inches: gravelly silt loam

Properties and qualities

- Slope: 3 to 8 percent
- *Depth to restrictive feature:* 20 to 40 inches to fragipan; 80 to 99 inches to lithic bedrock
- Natural drainage class: Somewhat poorly drained
- Runoff class: Very high
- Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.60 in/hr)
- Depth to water table: About 6 to 18 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Low (about 5.5 inches) Interpretive groups
- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 3w
- Hydrologic Soil Group: C/D
- Hydric soil rating: No

Minor Components

Bowmansville

- Percent of map unit: 8 percent
- Landform: Flood plains
- Landform position (two-dimensional): Footslope, toeslope
- Landform position (three-dimensional): Head slope
- *Down-slope shape:* Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: No

Knauers

• Percent of map unit: 2 percent

- Landform: Flood plains
- Landform position (two-dimensional): Toeslope, footslope
- Landform position (three-dimensional): Tread
- *Down-slope shape:* Linear, concave
- Across-slope shape: Linear, concave
- Hydric soil rating: Yes

Croton

- Percent of map unit: 2 percent
- Landform: Depressions
- Landform position (two-dimensional): Toeslope
- Landform position (three-dimensional): Base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: Yes

FoB-Fountainville silt loam, 3 to 8 percent slopes

Map Unit Setting

- National map unit symbol: 17pr
- *Elevation:* 250 to 1,000 feet
- *Mean annual precipitation:* 38 to 48 inches
- Mean annual air temperature: 45 to 63 degrees F
- Frost-free period: 155 to 200 days
- Farmland classification: All areas are prime farmland

Map Unit Composition

- Fountainville and similar soils: 90 percent
- Minor components: 7 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Fountainville

Setting

- Landform: Hills
- Landform position (two-dimensional): Backslope, summit
- Landform position (three-dimensional): Interfluve
- *Down-slope shape:* Linear, convex
- Across-slope shape: Linear, convex

Typical profile

- Ap 0 to 8 inches: silt loam
- Bt 8 to 22 inches: silt loam
- 2Btx 22 to 46 inches: channery silt loam
- *R 46 to 56 inches:* bedrock

Properties and qualities

• Slope: 3 to 8 percent

- *Depth to restrictive feature:* 20 to 40 inches to fragipan; 40 to 60 inches to lithic bedrock
- *Natural drainage class:* Moderately well drained
- Runoff class: Medium
- Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)
- Depth to water table: About 18 to 30 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Low (about 4.0 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 2e
- Hydrologic Soil Group: C
- Hydric soil rating: No

Minor Components

Penn

- Percent of map unit: 5 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Shoulder, backslope
- Landform position (three-dimensional): Side slope, nose slope
- *Down-slope shape:* Linear, convex
- Across-slope shape: Convex, linear
- Hydric soil rating: No

Doylestown

- Percent of map unit: 1 percent
- Landform: Drainageways
- Landform position (two-dimensional): Toeslope, footslope, backslope
- Landform position (three-dimensional): Head slope
- Down-slope shape: Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: Yes

Abbottstown

- Percent of map unit: 1 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, toeslope
- Hydric soil rating: No

PnB—Penn-Lansdale complex, 3 to 8 percent slopes

Map Unit Setting

- National map unit symbol: 17rv
- Elevation: 250 to 950 feet
- Mean annual precipitation: 36 to 50 inches

- Mean annual air temperature: 46 to 57 degrees F
- Frost-free period: 160 to 200 days
- Farmland classification: All areas are prime farmland

Map Unit Composition

- Penn and similar soils: 69 percent
- Lansdale and similar soils: 25 percent
- Minor components: 6 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Penn

Setting

- Landform: Hillslopes
- Landform position (two-dimensional): Shoulder, backslope
- Landform position (three-dimensional): Side slope, nose slope
- *Down-slope shape:* Linear, convex
- Across-slope shape: Convex, linear
- *Parent material:* Residuum weathered from shale and siltstone **Typical profile**
- Ap 0 to 10 inches: channery silt loam
- Bt 10 to 22 inches: channery silt loam
- C 22 to 28 inches: very channery silt loam
- *R 28 to 48 inches:* bedrock

Properties and qualities

- Slope: 3 to 8 percent
- Depth to restrictive feature: 20 to 40 inches to lithic bedrock
- Natural drainage class: Well drained
- Runoff class: Low
- Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 6.00 in/hr)
- Depth to water table: More than 80 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Low (about 4.1 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 2e
- Hydrologic Soil Group: B
- Hydric soil rating: No

Description of Lansdale

Setting

- Landform: Hillsides
- Landform position (two-dimensional): Summit, shoulder, backslope

- Landform position (three-dimensional): Side slope
- Down-slope shape: Convex
- Across-slope shape: Convex
- *Parent material:* Residuum weathered from sandstone and/or residuum weathered from conglomerate

Typical profile

- Ap 0 to 10 inches: channery loam
- Bt 10 to 30 inches: sandy loam
- *C 30 to 47 inches:* channery loamy sand
- *R 47 to 57 inches:* bedrock

Properties and qualities

- Slope: 3 to 8 percent
- Depth to restrictive feature: 42 to 60 inches to lithic bedrock
- Natural drainage class: Well drained
- Runoff class: Medium
- Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
- Depth to water table: More than 80 inches
- Frequency of flooding: None
- *Frequency of ponding:* None
- Available water storage in profile: Low (about 5.6 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 2e
- Hydrologic Soil Group: B
- Hydric soil rating: No

Minor Components

Readington

- Percent of map unit: 6 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, backslope
- Landform position (three-dimensional): Base slope, head slope, side slope
- Down-slope shape: Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

UdB-Udorthents, shale and sandstone

Map Unit Setting

- National map unit symbol: 17sm
- *Elevation:* 200 to 1,500 feet
- Mean annual precipitation: 36 to 55 inches
- Mean annual air temperature: 45 to 57 degrees F

- Frost-free period: 160 to 214 days
- Farmland classification: Not prime farmland

Map Unit Composition

- Udorthents, shale and sandstone, and similar soils: 85 percent
- *Minor components:* 15 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Udorthents, Shale And Sandstone

Setting

- Landform: Ridges
- Landform position (two-dimensional): Summit, shoulder, backslope
- Landform position (three-dimensional): Interfluve, side slope, nose slope
- *Down-slope shape:* Convex, linear
- Across-slope shape: Convex, linear
- *Parent material:* Graded areas of shale and siltstone; graded areas of sandstone and shale

Typical profile

- Ap 0 to 6 inches: silt loam
- C 6 to 60 inches: silt loam

Properties and qualities

- Slope: 0 to 8 percent
- Depth to restrictive feature: 20 to 99 inches to lithic bedrock
- Natural drainage class: Well drained
- Runoff class: Very high
- Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.06 to 6.00 in/hr)
- Depth to water table: About 60 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Very low (about 2.9 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 7s
- Hydrologic Soil Group: A
- Hydric soil rating: No

Minor Components

Penn

- Percent of map unit: 5 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Shoulder, backslope
- Landform position (three-dimensional): Side slope, nose slope

- Down-slope shape: Linear, convex
- Across-slope shape: Convex, linear
- Hydric soil rating: No

Abbottstown

- Percent of map unit: 2 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, toeslope
- Landform position (three-dimensional): Base slope, head slope
- Down-slope shape: Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

Readington

- Percent of map unit: 2 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, backslope
- Landform position (three-dimensional): Base slope, head slope, side slope
- *Down-slope shape:* Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

Reaville

- Percent of map unit: 2 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, summit
- Landform position (three-dimensional): Interfluve, base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

Bowmansville

- Percent of map unit: 2 percent
- Landform: Flood plains
- Landform position (two-dimensional): Footslope, toeslope
- Landform position (three-dimensional): Head slope
- Down-slope shape: Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: No

Berks

- Percent of map unit: 1 percent
- Landform: Ridges, valleys
- Landform position (two-dimensional): Backslope
- Landform position (three-dimensional): Side slope
- Down-slope shape: Convex, linear
- Across-slope shape: Convex, linear

• Hydric soil rating: No

Croton

- Percent of map unit: 1 percent
- Landform: Depressions
- Landform position (two-dimensional): Toeslope
- Landform position (three-dimensional): Base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: Yes

UrB-Urban land-Lansdale complex, 0 to 8 percent slopes

Map Unit Setting

- National map unit symbol: 17t1
- Mean annual precipitation: 40 to 48 inches
- Mean annual air temperature: 48 to 57 degrees F
- Frost-free period: 160 to 215 days
- Farmland classification: Not prime farmland

Map Unit Composition

- Urban land: 65 percent
- Lansdale and similar soils: 25 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Urban Land

Setting

- Down-slope shape: Linear
- Across-slope shape: Linear
- *Parent material:* Pavement, buildings and other artifically covered areas **Typical profile**
- *H1 0 to 6 inches:* variable

Properties and qualities

- Slope: 0 to 8 percent
- Depth to restrictive feature: 10 to 99 inches to lithic bedrock
- Runoff class: Very high
- Available water storage in profile: Very low (about 0.0 inches) Interpretive groups
- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 8s
- Hydric soil rating: No

Description of Lansdale

Setting

- Landform: Hillsides
- Landform position (two-dimensional): Summit, shoulder, backslope

- Landform position (three-dimensional): Side slope
- Down-slope shape: Convex
- Across-slope shape: Convex
- *Parent material:* Residuum weathered from sandstone and/or residuum weathered from conglomerate

Typical profile

- Ap 0 to 10 inches: loam
- *B 10 to 38 inches:* loam
- *C 38 to 55 inches:* loamy sand
- *R 55 to 60 inches:* bedrock

Properties and qualities

- Slope: 0 to 8 percent
- Depth to restrictive feature: 42 to 99 inches to lithic bedrock
- Natural drainage class: Well drained
- Runoff class: Low
- Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
- Depth to water table: More than 80 inches
- Frequency of flooding: None
- *Frequency of ponding:* None
- Available water storage in profile: Moderate (about 6.7 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 2e
- Hydrologic Soil Group: B
- Hydric soil rating: No

UxB-Urban land-Penn complex, 0 to 8 percent slopes

Map Unit Setting

- National map unit symbol: 17t9
- *Elevation:* 200 to 1,000 feet
- Mean annual precipitation: 36 to 55 inches
- Mean annual air temperature: 46 to 57 degrees F
- Frost-free period: 160 to 215 days
- Farmland classification: Not prime farmland

Map Unit Composition

- Urban land: 65 percent
- Penn and similar soils: 25 percent
- *Minor components:* 10 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Urban Land

Setting

- Landform: Hills
- Down-slope shape: Linear
- Across-slope shape: Linear

• *Parent material:* Pavement, buildings and other artifically covered areas **Typical profile**

• *C* - 0 to 6 inches: variable

Properties and qualities

- Slope: 0 to 8 percent
- *Depth to restrictive feature:* 10 to 100 inches to lithic bedrock
- Available water storage in profile: Very low (about 0.0 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 8s
- Hydric soil rating: No

Description of Penn

Setting

- Landform: Hillslopes
- Landform position (two-dimensional): Shoulder, backslope
- Landform position (three-dimensional): Side slope, nose slope
- *Down-slope shape:* Linear, convex
- Across-slope shape: Convex, linear
- *Parent material:* Residuum weathered from shale and siltstone **Typical profile**
- Ap 0 to 8 inches: channery silt loam
- Bt 8 to 21 inches: channery silt loam
- C 21 to 34 inches: very channery silt loam
- *R 34 to 44 inches:* bedrock

Properties and qualities

- Slope: 0 to 8 percent
- Depth to restrictive feature: 20 to 40 inches to lithic bedrock
- *Natural drainage class:* Well drained
- Runoff class: Very low
- Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 6.00 in/hr)
- Depth to water table: More than 80 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Low (about 4.1 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 2e
- Hydrologic Soil Group: в

• Hydric soil rating: No

Minor Components

Readington

- Percent of map unit: 4 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, backslope
- Landform position (three-dimensional): Base slope, head slope, side slope
- *Down-slope shape:* Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

Croton

- Percent of map unit: 4 percent
- *Landform:* Depressions
- Landform position (two-dimensional): Toeslope
- Landform position (three-dimensional): Base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: Yes

Reaville

- Percent of map unit: 2 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, summit
- Landform position (three-dimensional): Interfluve, base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

UxD-Urban land-Penn complex, 8 to 25 percent slopes

Map Unit Setting

- National map unit symbol: 17tb
- *Elevation:* 200 to 1,000 feet
- Mean annual precipitation: 36 to 55 inches
- Mean annual air temperature: 44 to 57 degrees F
- Frost-free period: 130 to 200 days
- Farmland classification: Not prime farmland

Map Unit Composition

- Urban land: 65 percent
- Penn and similar soils: 25 percent
- Minor components: 10 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Urban Land

Setting

- Landform: Hills
- Down-slope shape: Linear
- Across-slope shape: Linear
- *Parent material:* Pavement, buildings and other artifically covered areas **Typical profile**
- C 0 to 6 inches: variable

Properties and qualities

- Slope: 8 to 25 percent
- *Depth to restrictive feature:* 10 to 79 inches to lithic bedrock
- Available water storage in profile: Very low (about 0.0 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 8s
- Hydric soil rating: No

Description of Penn

Setting

- Landform: Hillslopes
- Landform position (two-dimensional): Shoulder, backslope
- Landform position (three-dimensional): Side slope, nose slope
- Down-slope shape: Linear, convex
- Across-slope shape: Convex, linear
- *Parent material:* Residuum weathered from shale and siltstone **Typical profile**
- Ap 0 to 8 inches: channery silt loam
- Bt 8 to 21 inches: channery silt loam
- C 21 to 34 inches: very channery silt loam
- *R 34 to 44 inches:* bedrock

Properties and qualities

- Slope: 8 to 25 percent
- Depth to restrictive feature: 20 to 40 inches to lithic bedrock
- Natural drainage class: Well drained
- Runoff class: Low
- Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 6.00 in/hr)
- Depth to water table: More than 80 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Low (about 4.1 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 4e

- Hydrologic Soil Group: B
- Hydric soil rating: No

Minor Components

Croton

- Percent of map unit: 4 percent
- Landform: Depressions
- Landform position (two-dimensional): Toeslope
- Landform position (three-dimensional): Base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: Yes

Readington

- Percent of map unit: 4 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, backslope
- Landform position (three-dimensional): Base slope, head slope, side slope
- *Down-slope shape:* Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

Reaville

- Percent of map unit: 2 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, summit
- Landform position (three-dimensional): Interfluve, base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

INFILTRATION REPORT FOR THE SNIPES SITE

Block and Lot: 016-002

Lower Makefield Township, Bucks County, Pennsylvania

November 1, 2016 (Revised May 11, 2017)

Prepared for:

Lower Makefield Township 1100 Edgewood Road Yardley, PA 19067

CONSULTING ENGINEERS

Corporate Headquarters: 1456 Ferry Road, Building 500 Doylestown, PA 18901 (215) 345-9400 *Regional Office:* 2738 Rimrock Drive Stroudsburg, PA 18360 (570) 629-0300 *Regional Office:* 559 Main Street, Suite 230 Bethlehem, PA 18018 (610) 419-9407

TABLE OF CONTENTS

PROJECT OBJECTIVE AND SCOPE OF WORK PUBLISHED GEOLOGICAL / SOILS INFORMATION FIELD INVESTIGATION, OBSERVATIONS AND DATA

- APPENDIX I TEST PIT LOCATION PLAN
- APPENDIX II DOUBLE RING INFILTROMETER TEST RESULTS
- APPENDIX III NRCS SOIL INFORMATION

P:\2016\1677054\Design Data\SWM\Infiltration\Rptto.LM.Infiltration Report.docx

PROJECT OBJECTIVE AND SCOPE OF WORK

Boucher & James, Inc. has completed the geotechnical investigation for the Snipes Tract located in Lower Makefield Township, Bucks County, Pennsylvania. The investigation involved evaluation of the subsurface soil conditions for stormwater infiltration.

The scope of work included performing test pits in areas proposed for stormwater infiltration. Soils profiles were examined and described using standard nomenclature including Munsell color charts. Test pits were dug typically to a minimum depth of six feet from the soil surface or until refusal at bedrock. Following examination of the soils, infiltration testing at representative locations was conducted. The infiltration testing was performed using double ring infiltrometers and percolation tests. Methods described in the Standard Test Method for Infiltration Rate of Soils in Field Using Double-Ring Infiltrometer (ASTM D 3385-03), as referenced in Appendix C of the Pennsylvania Stormwater Best Management Practices Manual (BMP Manual), as well as percolation testing directly described in the BMP Manual were utilized to conduct the testing.

PUBLISHED GEOLOGIC / SOILS INFORMATION

According to the Geologic Map of Bucks County, Pennsylvania (1950) the site is situated within an area underlain by the Triassic Period Stockton Formation. The excavations appear to confirm the presence of the Stockton Formation bedrock which typically consists of medium to coarse grained sandstone, siltstone and mudstone with interbedded shale. The Stockton Formation does not consist of Karst or carbonate geology. No sinkhole evidence was noted on the site.

According to the USDA Natural Resources Conservation Service Web Soil Survey, soils on site in the area of the test pits consist of the Penn – Lansdale Complex. These soils are described as well drained with water tables at more than eighty inches from the soil surface. Bedrock is typically encountered between twenty-eight and forty-eight inches from the soil surface. Examination of the test pits appears to generally match with the published soils data.

FIELD INVESTIGATION, OBSERVATIONS AND DATA

On October 14th and 26th, 2016 and May 10th 2017, nineteen test pits were performed on the site. Pits were dug at the locations shown on the plan in Appendix I. The pit locations corresponded to potential infiltration areas associated with stormwater facilities. Topsoil depths at the test pits ranged between seven and ten inches thick.

Overall soils varied in composition throughout the test areas. Mottling was noted in only one test pit, near the soil surface, and appeared to be due to soil compaction. Bedrock was encountered in a third of the test pits at depths between twenty and ninety-six from the soil surface.

The soil examinations and testing revealed variable soils across the site which resulted in a wide range of infiltration rates, from limited to good infiltration capacity. Additional measures, such as modified soils as described in the BMP manual, should be considered for infiltration rates exceeding six inches per hour. The test pit soil descriptions and infiltration test results are included in Appendix II.

APPENDIX I

APPENDIX II

APPENDIX III

SITE INVESTIGATION AND PERCOLATION TEST REPORT FOR STORMWATER INFILTRATION

Site	e Locati	ion: <u>Sr</u>	nipes Tr	act		Municipal	lity: Lower	Makefield	1	Cour	nty: <u>Bucks</u>	1
Soi	I Type:	PnB										
	escription		ed by:	Terry Harris	, SEO #02596	6			Date	e: October	14, 2017	
			Toet F	Pit # A						Add	litional Pits	
	Inches		103(1	ι <i>π</i> Α	Desc	ription of Ho	orizon			Auc		
0		8	A, 10YR	4/3, SIL, VFF		-						
8	то	33		R5/8, SIL, FR								
33	то	80	B2, 5YR	3/3, SIL, VFI	, SBK							
80	ТО		BEDRO	СК								
	TO									D	ale de la tradition	7
	TO									Dep	oth to Limiting 80 Incl	
/eath	epth belov er Conditi onditions:	ions:	-	5 Feet ow 40 F		⁼ or above Frozen	X Dry		Rain, Sleet, S Presoak		l hours) No	
			Wei	A Diy		FIOZEII		24 11001	Flesuak	Tes A	INO	
	Hole No.	Yes	No	Reading Interval	Reading No. 1: Inches of Drop	Reading No. 2: Inches of Drop	Reading No. 3: Inches of Drop	Reading No. 4: Inches of Drop	Reading No. 5: Inches of Drop	Reading No. 6: Inches of Drop	Reading No. 7: Inches of Drop	Reading No. 8: Inches of Drop
-	1	X	NO	XX / 30	0.125	0.125	0.125	0.125	2.00	2.00	2.00	2.00
	2	Х		XX / 30	0.125	0.125	0.125	0.125				
	3	Х		XX / 30	0.125	0.125	0.125	0.125				
	*** Wat	ter remaii	ning in the	e hole at the e	end of the fina	al 30 minute p	presoak? Yes	, use 30 mini	ute interval; No	o use 10 min	ute interval	
		[Drop durin	ıg	Perc. Rate as	s D	epth of	Infi	Itration Rate			
ŀ	lole No.	t	final perio	d	Minutes / Incl	า	Hole	(Re	duction Fact	or from BM	P Manual Ap	oplied)
_	1		0.125		240.00		12 "					
	2		0.125		240.00		12 "				(minutes / in	ch)
							10 "		6.00 Initia	al Water Dep	th (Inches)	
	3		0.125		240.00		12 "					(1
	3		0.125		240.00		12		0.125 Aver	age / Final V	Vater Level D colation Holes	

SITE INVESTIGATION AND PERCOLATION TEST REPORT FOR STORMWATER INFILTRATION

Soll Description Completed by: Terry Harris, SEO #02596 Date: October 14, 2017 Test Pit # B Additional Pits Test Pit # B Additional Pits Description of Horizon 0 70 82 Pit 10% Pits, Sit, FR, SBK Description Converted Parameters Description Converted Parameters 22 70 70 B2, 5YR3/3, Sit, VFI, SBK Description Converted Parameters Description Converted Parameters Description Converted Parameters Percolation Test: Percolation Test: Date: May 10, 2017 Test depth below existing grade: 5 Feet Weather Conditions: Betow 40 F X 40 F or above X Dry Reading Reading Reading Reading No.3: Inches of Inches o		e Locati il Type:		nipes Tra	act		Municipa	ality: <u>Low</u>	er Makefi	eld	Cour	nty: <u>Bucks</u>	i
Test PH # B Additional Pits Inches Description of Horizon Description of Horizon 0 10 8 10/764/3, SIL, VFR, GR Ester Philo Ester		•		ed by: -		SEO #02506	x			Date	2 [.] Ootobor	14 0017	
Inches Description of Horizon 0 Tro 8 A. 10YR4/3, SL, VFR, GR 32 To 70 B2, 5YR3/3, SIL, VFI, SBK		coorption	Complet		reny nam:	5, SEO #02590)					14, 2017	
0 To 8 A. 10/PR4/3. SIL, VFR, GR 8 To 32 B1, 10/PR5/8. SIL, VFR, SBK				Test Pi	it#B						Add	ditional Pits	
8 ro 32 B1, 10YR5/8, SIL, VFI, SBK 32 ro 70 B2, 5YR3/3, SIL, VFI, SBK 70 ro BEDROCK ro BEDROCK Depth to Limiting Zone 70 ro Date: May 10, 2017 Test depth below existing grade: 5 Feet Weather Conditions: Wet Tory Frazen Reading Reading Reading Reading Reading No. 1: No. 2: No. 3: No. 4: No. 5: No. 7: No. 8: Hole No. Yes No Inches of		Inches				Desci	ription of H	<u>lorizon</u>					
32 ro 70 70 B2, 5YR3/3, SIL, VFI, SBK 70 ro BEDROCK Depth to Limiting Zone 70 ro													
To BEDROCK To	8	то	32										
ro	32	TO	70			I, SBK							
To	70			BEDROC	CK								
Percolation Test: Percolation Test: Percolation Test Completed by: James Haklar Date: May 10, 2017 Fest depth below existing grade: 5 Feet Weather Conditions: Below 40 F X Dry Reading Reading Reading Reading Reading Reading Reading No. 5: No. 5: No. 6: No. 7: No. 8: Image: Solid Conditions: Wet X Dry Frozen Reading Reading Reading Reading Reading No. 6: No. 7: No. 8: Image: Solid Conditions: Wet X Drop Inches of											Dor	ath to Limiting	7000
Percolation Test: Date: May 10, 2017 Test depth below existing grade: 5 Feet Weather Conditions: Below 40 F \mathbf{x} 40 F or above \mathbf{X} Dry Rain, Sleet, Snow (last 24 hours) Soll Conditions: Wet \mathbf{X} Dry Frozen \mathbf{X} Hour Presoak Yes \mathbf{X} No Image: the state of													
Percolation Test Completed by: James Haklar Date: May 10, 2017 Test depth below existing grade: 5 Feet Weather Conditions: Below 40 F X 40 F or above X Dry Rain, Sleet, Snow (last 24 hours) Soil Conditions: Wet X Dry Frozen 24 Hour Presoak Yes X No Image: Soil Conditions: Wet X Dry Reading Reading Reading Reading Reading Reading Reading Reading Reading No. 3: No. 4: Inches of													
Weather Conditions: Below 40 F x 40 F or above Frozen X Dry Rain, Sleet, Snow (last 24 hours) Soil Conditions: Wet X Dry Frozen 24 Hour Presoak Yes X No Image: Soil Conditions: Wet X Dry Reading Reading Reading Reading Reading Reading No. 3: No. 4: No. 5: No. 6: No. 7: No. 8: Inches of Hole No. Yes No 1 Inches of Drop No Statstatstatsta				ted by:	James Hak	lar				Date	e: <u>May 10</u> ,	2017	
Image: No. 1: No. 1: No. 2: No. 3: No. 4: No. 5: No. 6: No. 7: No. 8: Hole No. Yes No Inches of Drop	Veatl	ner Conditi	ions:	Belov	w 4 <u>0 F</u>			X			· · · · · · · · · · · · · · · · · · ·		
No. 1.No. 2.No. 3.No. 4.No. 3.No. 5.No. 5.No. 7.No. 7.No. 7.No. 7.Hole No.YesNoInches ofInches of<						-	-	-			-	-	-
Hole No. Yes No Interval Drop				***	Deedine								
Image: transmission of the state of th		Hole No	Ves	No	0	_	_	_				_	
2xXX / 304.5004.5004.3754.2503xXX / 302.6252.7502.6252.500*** Water remaining in the hole at the end of the final 30 minute presoak? Yes, use 30 minute interval; No use 10 minute intervalInfiltration Rate (Reduction Factor from BMP Manual Applied)12.25013.3312"2*4.2507.0612"32.50012.0012"Total of Minutes / Inch:25.33=12.67Minutes / Inch:25.33<			-	NO							2.00	2.00	2.00
3 x XX / 30 2.625 2.750 2.625 2.500 *** Water remaining in the hole at the end of the final 30 minute presoak? Yes, use 30 minute interval; No use 10 minute interval Mole No. Drop during final period Perc. Rate as Minutes / Inch Depth of Hole Infiltration Rate (Reduction Factor from BMP Manual Applied) 1 2.250 13.33 12 " " 12.67 Percolation Rate (minutes / inch) Initial Water Depth (Inches) Note and the final Water Level Drop (Inches) 3 2.500 12.00 12 " 4.74 Converted Percolation Rate (inches / hour) Total of Minutes / Inch: 25.33 = 12.67 Minutes / Minutes / Infiltration Rate, I, (inches / hour)													
Drop during final period Perc. Rate as Minutes / Inch Depth of Hole Infiltration Rate (Reduction Factor from BMP Manual Applied) 1 2.250 13.33 12 " 2* 4.250 7.06 12 " 3 2.500 12.00 12 " 1.2.375 Average / Final Water Level Drop (Inches) 2.375 Average / Final Water Level Drop (Inches) 8.00 Diameter of Percolation Rate (inches / hour) 1.4.74 Converted Percolation Rate (inches / hour) 4.74 Converted Percolation Rate (inches / hour)		3	х		XX / 30	2.625	2.750	2.625	2.500)			
Hole No. final period Minutes / Inch Hole (Reduction Factor from BMP Manual Applied) 1 2.250 13.33 12 " 2* 4.250 7.06 12 " 3 2.500 12.00 12 " 6.00 Initial Water Depth (Inches) 2.375 Average / Final Water Level Drop (Inches) 8.00 Diameter of Percolation Holes (Inches) 8.00 Diameter of Percolation Holes (Inches) 10 12 " 4.74 Converted Percolation Rate (inches / hour)		*** Wat	ter remair	ning in the	hole at the	end of the fina	l 30 minute	presoak? Y				nute interval	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					-			•					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	-	l		1			(Reduction Fact	tor from BM	P Manual Ap	oplied)
3 2.500 12.00 12 6.00 Initial Water Depth (Inches) 2.375 Average / Final Water Level Drop (Inches) 8.00 Diameter of Percolation Holes (Inches) 4.74 Converted Percolation Rate (inches / hour) Total of Minutes / Inch: 25.33 = 12.67								12	r		olotion D-4-	(minuta- 1)-	ch)
2.375 Average / Final Water Level Drop (Inches 8.00 Diameter of Percolation Holes (Inches) 4.74 Converted Percolation Rate (inches / hou Total of Minutes / Inch: 25.33 = 12.67 Minutes / 2.15 Infiltration Rate, I, (inches / hour)	_							12					CH)
8.00 Diameter of Percolation Holes (Inches) 4.74 Converted Percolation Rate (inches / hou Total of Minutes / Inch: 25.33 = 12.67 Minutes / 2.15 Infiltration Rate, I, (inches / hour)	_	3		2.500		12.00		12 "					kon (lasha-)
Total of Minutes / Inch: 25.33 = 12.67 Minutes / 2.15 Infiltration Rate, I, (inches / hour)									ļ				
			Total of	Minutes /	Inch:	25.33	=	12.67	Minutes /				
								12101		2.15		, , ,	/
			* - Perc	rate not u	sed in calc	ulation per BM	P Guidance	e					

Site Name:	Snipes Tract - Lower Makefield Township			Head	or Depth of Water (H):	6 Inches
Pit # / Location:	С			Outer	Ring Diameter:	12 Inches
Date Soil Described:	October 14, 2016			Inner	Ring Diameter:	8 Inches
Personnel:	Mr. Terry Harris			Deptl	n of Test Below Grade:	48 Inches
Infiltration Date:	October 26, 2016			Soil I	Description:	Soil Type: PnB
Personnel:	Mr. James Haklar	0	ТО	9	A, 10YR4/3, SIL, VF	R, GR
		9	TO	33	B1, 10YR5/8, SIL, FI	R, SBK
		33	TO	96	B2, 2.5YR5/3, SL, V	FR, GR
			TO			
			ТО			
			ТО			
			ТО			

INNER RING READINGS

		INFILTRATION	TEST 1		INFILTRATION	TEST 2			
Date	Time	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)
1									
10/26/16	10:35 AM								
10/26/16	10:50 AM	15	2,100	140.0	0.174	15	2,600	173.3	0.215
10/26/16	11:05 AM	15	2,000	133.3	0.166	15	2,350	156.7	0.195
10/26/16	11:20 AM	15	2,000	133.3	0.166	15	2,000	133.3	0.166
10/26/16	11:35 AM	15	1,930	128.7	0.160	15	1,960	130.7	0.162
						15	1,250	83.3	0.104
						15	1,300	86.7	0.108
						15	1,250	83.3	0.104
						15	1,240	82.7	0.103

TEST 1 INFILTRATION RATE

Inches per minute	0.16
Inches per hour	9.60
Inches per day	230.30

Inches per minute	0.10
Inches per hour	6.17
Inches per day	147.97

Site Name:	Snipes Tract - Lower Makefield Township			Head	or Depth of Water (H):	6 Inches
Pit # / Location:	D			Outer	r Ring Diameter:	12 Inches
Date Soil Described:	October 14, 2016			Inner	Ring Diameter:	8 Inches
Personnel:	Mr. Terry Harris			Dept	h of Test Below Grade:	48 Inches
Infiltration Date:	October 26, 2016			Soil l	Description:	Soil Type: PnB
Personnel:	Mr. James Haklar	0	ТО	8	A, 10YR4/3, SIL, VF	FR, GR
		8	TO	32	B1, 10YR5/8, SIL, F	R, SBK
		32	TO	80	B2, 2.5YR5/3, CBSL	, VFR, GR
			TO			
			TO			
			ТО			
			ТО			

INNER RING READINGS

		INFILTRATION	TEST 1			INFILTRATION TEST 2					
Date	Time	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)		
10/06/116	10.40.434				1						
10/26/16	10:40 AM										
10/26/16	10:55 AM	15	4,000	266.7	0.331	15	3,420	228.0	0.283		
10/26/16	11:10 AM	15	4,000	266.7	0.331	15	3,430	228.7	0.284		
10/26/16	11:25 AM	15	4,000	266.7	0.331	15	3,400	226.7	0.282		
10/26/16	11:40 AM	15	4,000	266.7	0.331	15	3,420	228.0	0.283		

TEST 1 INFILTRATION RATE

Inches per minute	0.33
Inches per hour	19.89
Inches per day	477.31

Inches per minute	0.28
Inches per hour	17.00
Inches per day	408.10

Site Name:	Snipes Tract - Lower Makefield Township			Head	or Depth of Water (H):	6 Inches
Pit # / Location:	Ε			Outer	Ring Diameter:	12 Inches
Date Soil Described:	October 14, 2016			Inner	Ring Diameter:	8 Inches
Personnel:	Mr. Terry Harris			Deptl	n of Test Below Grade:	48 Inches
Infiltration Date:	October 26, 2016			Soil I	Description:	Soil Type: PnB
Personnel:	Mr. James Haklar	0	ТО	10	A, 10YR4/3, SIL, VF	R, GR
		10	ТО	50	B1, 10YR5/8, SIL, FF	R, SBK
		50	ТО	72	B2, 5YR4/6, SL, VFR	R, GR
		72	ТО	84	B3, 2.5YR5/3, SL, VI	FR, GR
			ТО			
			ТО			
			ТО			

INNER RING READINGS

		INFILTRATION	TEST 1			INFILTRATION	INFILTRATION TEST 2					
Date	Time	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)			
10/06/116	10.45.436											
10/26/16	10:45 AM											
10/26/16	11:00 AM	15	30	2.0	0.002	15	1,000	66.7	0.083			
10/26/16	11:15 AM	15	30	2.0	0.002	15	850	56.7	0.070			
10/26/16	11:30 AM	15	20	1.3	0.002	15	680	45.3	0.056			
10/26/16	11:45 AM	15	20	1.3	0.002	15	600	40.0	0.050			
						15	600	40.0	0.050			
						15	600	40.0	0.050			
						15	600	40.0	0.050			

TEST 1 INFILTRATION RATE

Inches per minute	0.00
Inches per hour	0.10
Inches per day	2.39

Inches per minute	0.05
Inches per hour	2.98
Inches per day	71.60

SITE INVESTIGATION AND PERCOLATION TEST REPORT FOR STORMWATER INFILTRATION

Site Location: <u>Snipes Tract</u> Soil Type: <u>PnB</u>						Municipa	lity: Lower	Makefield		Cour	nty: <u>Bucks</u>	
	escripti	ion:										
		on Compl	eted by:	Terry Harris	, SEO #02596	3			Date	. October	14, 2017	
			-		,							
			Test Pi	it#F						<u>Add</u>	litional Pits	
	Inches	-				ription of He	<u>orizon</u>					
0	TO	8		4/3, SIL, VF								
8	TO	25		R5/8, SIL, F								
25	TO	34		R5/6, SIL, F								
34	то то	90	B3, 5YR3	3/3, SIL, VF	I, SBK							
-	_ то _									Den	oth to Limiting	Zone
											> 90 Inch	
		est Comp	ng grade:	James Hakl 2 Feet						.: <u>May 10,</u>	2017	
stu	eptribei		ng grade.	2 Feel								
	er Conc onditions		Belov Wet	w 40 F XDry		⁻ or above Frozen	XDry		Rain, Sleet, S Presoak		hours) No	
							X Dry Reading					Reading
				X Dry	Reading No. 1:	Frozen Reading No. 2:	Reading No. 3:	24 Hour Reading No. 4:	Presoak Reading No. 5:	Yes X Reading No. 6:	No Reading No. 7:	No. 8:
	onditions	s:	Wet	X Dry Reading	Reading No. 1: Inches of	Frozen Reading No. 2: Inches of	Reading No. 3: Inches of	24 Hour Reading No. 4: Inches of	Presoak Reading No. 5: Inches of	Yes X Reading No. 6: Inches of	No Reading No. 7: Inches of	No. 8: Inches of
il C	onditions	s: b. Yes	Wet	X Dry Reading Interval	Reading No. 1: Inches of Drop	Frozen Reading No. 2: Inches of Drop	Reading No. 3: Inches of Drop	24 Hour Reading No. 4: Inches of Drop	Presoak Reading No. 5:	Yes X Reading No. 6:	No Reading No. 7:	No. 8:
il C	Hole No	s: b. Yes	Wet	Reading Interval XX / 30	Reading No. 1: Inches of Drop 0.250	Frozen Reading No. 2: Inches of Drop 0.250	Reading No. 3: Inches of Drop 0.125	24 Hour Reading No. 4: Inches of Drop 0.125	Presoak Reading No. 5: Inches of	Yes X Reading No. 6: Inches of	No Reading No. 7: Inches of	No. 8: Inches of
il C	Hole No	s: b. Yes X X	Wet	Reading Interval XX / 30 XX / 30	Reading No. 1: Inches of Drop 0.250 0.250	Frozen Reading No. 2: Inches of Drop 0.250 0.250	Reading No. 3: Inches of Drop 0.125 0.250	24 Hour Reading No. 4: Inches of Drop 0.125 0.250	Presoak Reading No. 5: Inches of	Yes X Reading No. 6: Inches of	No Reading No. 7: Inches of	No. 8: Inches of
il C	Hole No	s: . Yes x x x	Wet **** No	Reading Interval XX / 30 XX / 30 XX / 30	Reading No. 1: Inches of Drop 0.250 0.250 0.125	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125	Reading No. 3: Inches of Drop 0.125 0.250 0.125	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125	Presoak Reading No. 5: Inches of Drop	Yes X Reading No. 6: Inches of Drop	No Reading No. 7: Inches of Drop	No. 8: Inches of
oil Co	Hole No	s: . Yes x x x	Wet **** No	Reading Interval XX / 30 XX / 30 XX / 30	Reading No. 1: Inches of Drop 0.250 0.250 0.125	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125	Reading No. 3: Inches of Drop 0.125 0.250 0.125	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125	Presoak Reading No. 5: Inches of	Yes X Reading No. 6: Inches of Drop	No Reading No. 7: Inches of Drop	No. 8: Inches of
il C	Hole No	s: . Yes x x x	Wet	Reading Interval XX / 30 XX / 30 XX / 30 hole at the o	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 oresoak? Yes	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min	Presoak Reading No. 5: Inches of Drop	Yes X Reading No. 6: Inches of Drop	No Reading No. 7: Inches of Drop	No. 8: Inches of
	Hole No 1 2 3 *** W	s: Yes X X Vater rem	Wet	Reading Interval XX / 30 XX / 30 XX / 30 hole at the	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 oresoak? Yes	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min	Presoak Reading No. 5: Inches of Drop ute interval; No Itration Rate	Yes X Reading No. 6: Inches of Drop	No Reading No. 7: Inches of Drop ute interval	No. 8: Inches of Drop
	Hole No 1 2 3 *** W	s: Yes X X Vater rem	Wet	Reading Interval XX / 30 XX / 30 XX / 30 hole at the	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina Perc. Rate as Minutes / Inch	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 oresoak? Yes Pepth of Hole	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min	Presoak Reading No. 5: Inches of Drop ute interval; No	Yes X Reading No. 6: Inches of Drop	No Reading No. 7: Inches of Drop ute interval	No. 8: Inches of Drop
	Hole No 1 2 3 *** W Hole No 1	s: Yes X X Vater rem	Wet	Reading Interval XX / 30 XX / 30 XX / 30 hole at the	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina Perc. Rate as Minutes / Inch 240.00	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 oresoak? Yes Pepth of Hole 12 "	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min	Presoak Reading No. 5: Inches of Drop ute interval; No Itration Rate eduction Facto	Yes X Reading No. 6: Inches of Drop	No Reading No. 7: Inches of Drop ute interval	No. 8: Inches of Drop
	Hole No 1 2 3 *** W Hole No 1 2*	s: Yes X X Vater rem	Wet	Reading Interval XX / 30 XX / 30 XX / 30 hole at the	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina Perc. Rate as Minutes / Inch	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 presoak? Yes Pepth of Hole 12 12	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min	Presoak Reading No. 5: Inches of Drop ute interval; No Itration Rate eduction Factor 240.00	Yes X Reading No. 6: Inches of Drop o use 10 min or from BM	No Reading No. 7: Inches of Drop ute interval P Manual Ap (minutes / ind	No. 8: Inches of Drop
	Hole No 1 2 3 *** W Hole No 1	s: Yes X X Vater rem	Wet	Reading Interval XX / 30 XX / 30 XX / 30 hole at the	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina Perc. Rate as Minutes / Inch 240.00 120.00	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 oresoak? Yes Pepth of Hole 12 "	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min	Presoak Reading No. 5: Inches of Drop Ute interval; No Itration Rate Eduction Factor 240.00 Initia	Yes X Reading No. 6: Inches of Drop o use 10 min or from BM olation Rate	No Reading No. 7: Inches of Drop ute interval P Manual Ap (minutes / ind th (Inches)	No. 8: Inches of Drop poplied)
	Hole No 1 2 3 *** W Hole No 1 2*	s: Yes X X Vater rem	Wet	Reading Interval XX / 30 XX / 30 XX / 30 hole at the	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina Perc. Rate as Minutes / Inch 240.00 120.00	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 presoak? Yes Pepth of Hole 12 12	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min	Presoak Reading No. 5: Inches of Drop ute interval; No Itration Rate eduction Factor 240.00 6.00 Initia 0.125 Aver	Yes X Reading No. 6: Inches of Drop o use 10 min ouse 10 min ouse 10 min ouse 10 min ouse 10 min ouse 10 min	No Reading No. 7: Inches of Drop ute interval wite interval P Manual Ap (minutes / ind th (Inches) Vater Level D	No. 8: Inches of Drop pplied) ch)
	Hole No 1 2 3 *** W Hole No 1 2*	s: Yes X X Vater rem	Wet	Reading Interval XX / 30 XX / 30 XX / 30 hole at the	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina Perc. Rate as Minutes / Inch 240.00 120.00	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 presoak? Yes Pepth of Hole 12 12	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min	Presoak Reading No. 5: Inches of Drop ute interval; No Itration Rate eduction Factor 240.00 6.00 Initia 0.125 Aver	Yes X Reading No. 6: Inches of Drop o use 10 min ouse 10 min ouse 10 min ouse 10 min ouse 10 min ouse 10 min	No Reading No. 7: Inches of Drop ute interval P Manual Ap (minutes / ind th (Inches)	No. 8: Inches of Drop pplied) ch)
	Hole No 1 2 3 *** W Hole No 1 2*	s: Yes X X Vater rem	Wet	Reading Interval XX / 30 XX / 30 XX / 30 hole at the	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina Perc. Rate as Minutes / Inch 240.00 120.00	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 presoak? Yes Pepth of Hole 12 12	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min	Presoak Reading No. 5: Inches of Drop ute interval; No Itration Rate eduction Factor 240.00 6.00 Initia 0.125 Aver	Yes X Reading No. 6: Inches of Drop o use 10 min ouse 10 min ouse 10 min ouse 10 min ouse 10 min ouse 10 min	No Reading No. 7: Inches of Drop ute interval wite interval P Manual Ap (minutes / ind th (Inches) Vater Level D	No. 8: Inches of Drop pplied) ch)
	Hole No 1 2 3 *** W Hole No 1 2*	s: Yes X X Vater rem	Wet	Reading Interval XX / 30 XX / 30 XX / 30 hole at the	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina Perc. Rate as Minutes / Inch 240.00 120.00	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 presoak? Yes Pepth of Hole 12 12	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min	Presoak Reading No. 5: Inches of Drop ute interval; No Itration Rate 240.00 Perc 6.00 Initia 0.125 Aver 8.00 Diam	Yes X Reading No. 6: Inches of Drop o use 10 min o use 10 min olation Rate I Water Dep age / Final W neter of Perc	No Reading No. 7: Inches of Drop ute interval P Manual Ap (minutes / ind th (Inches) Vater Level D olation Holes	No. 8: Inches of Drop oplied) ch) (Inches)
	Hole No 1 2 3 *** W Hole No 1 2*	s: yes x x x x yater rem;	Wet	X Dry Reading Interval XX / 30 XX / 30 XX / 30 XX / 30 An and the original statement of the	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina Perc. Rate as Minutes / Inch 240.00 120.00 240.00	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 oresoak? Yes Depth of Hole 12 12 12	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min Infi (Re	Presoak Reading No. 5: Inches of Drop ute interval; No Itration Rate eduction Facto 240.00 Perc 6.00 Initia 0.125 Aver 8.00 Diam 0.25 Conv	Yes X Reading No. 6: Inches of Drop o use 10 min out on a the l Water Dep age / Final W neter of Perco	No Reading No. 7: Inches of Drop ute interval P Manual Ap (minutes / ind th (Inches) Vater Level D olation Holes	No. 8: Inches of Drop pplied) ch) (Inches) nches / hour
	Hole No 1 2 3 *** W Hole No 1 2*	s: Yes X X X /ater rem.	Wet	Reading Interval XX / 30 XX / 30 XX / 30 hole at the o	Reading No. 1: Inches of Drop 0.250 0.250 0.125 end of the fina Perc. Rate as Minutes / Inch 240.00 120.00	Frozen Reading No. 2: Inches of Drop 0.250 0.250 0.125 I 30 minute p	Reading No. 3: Inches of Drop 0.125 0.250 0.125 oresoak? Yes Pepth of Hole 12 12 12 12	24 Hour Reading No. 4: Inches of Drop 0.125 0.250 0.125 s, use 30 min Infi (Reading) (Reading) Infi	Presoak Reading No. 5: Inches of Drop ute interval; No Itration Rate eduction Facto 240.00 Perc 6.00 Initia 0.125 Aver 8.00 Diam 0.25 Conv	Yes X Reading No. 6: Inches of Drop o use 10 min out on a the l Water Dep age / Final W neter of Perco	No Reading No. 7: Inches of Drop ute interval P Manual Ap (minutes / ind th (Inches) Vater Level D olation Holes	No. 8: Inches of Drop pplied) ch) (Inches) nches / hour

Site Name:	Snipes Tract - Lower Makefield Township			Head	or Depth of Water (H):	6 Inches
Pit # / Location:	G			Outer	Ring Diameter:	12 Inches
Date Soil Described:	October 14, 2016			Inner	Ring Diameter:	8 Inches
Personnel:	Mr. Terry Harris			Depth	n of Test Below Grade:	Inches
Infiltration Date:				Soil I	Description:	Soil Type: PnB
Personnel:		0	ТО	9	A, 10YR4/3, SIL, VF	R, GR
		9	ТО	21	B1, 10YR5/8, SIL, FI	R, SBK
		21	ТО	33	B2, 10YR5/6, SIL, FI	R, SBK
		33	ТО	84	B3, 5YR3/3, SIL, VF	I, SBK
			ТО			
			ТО			
			ТО			

INFILTRATION TESTING WAS NOT PERFORMED AT THIS LOCATION

INNER RING READINGS

INFILTRATION TEST 1							TEST 2		
Date	Time	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)

TEST 1 INFILTRATION RATE

Inches per minute Inches per hour Inches per day

TEST 2 INFILTRATION RATE

Inches per minute Inches per hour Inches per day

Site Name:	Snipes Tract - Lower Makefield Township			Head	or Depth of Water (H):	6 Inches
Pit # / Location:	Н			Outer	Ring Diameter:	12 Inches
Date Soil Described:	October 14, 2016			Inner	Ring Diameter:	8 Inches
Personnel:	Mr. Terry Harris			Dept	n of Test Below Grade:	48 Inches
Infiltration Date:	October 14, 2016			Soil I	Description:	Soil Type: PnB
Personnel:	Mr. Terry Harris	0	ТО	10	A, 10YR4/3, SIL, VF	R, GR
		10	ТО	20	B1, 10YR5/8, SIL, FF	R, SBK
		20	ТО	96	B2, 5YR3/3, SIL, VF	I, SBK
		96	ТО		BEDROCK	
			ТО			
			ТО			
			ТО			

INNER RING READINGS

INFILTRATION TEST 1							INFILTRATION TEST 2				
Date	Time	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)		
	1 1										
10/14/16	12:35 PM										
10/14/16	12:50 PM	15	0	0.0	0.000	15	0	0.0	0.000		
10/14/16	1:05 PM	15	40	2.7	0.003	15	0	0.0	0.000		
10/14/16	1:20 PM	15	20	1.3	0.002	15	0	0.0	0.000		
10/14/16	1:35 PM	15	10	0.7	0.001	15	0	0.0	0.000		
10/14/16	1:50 PM	15	0	0.0	0.000	15	0	0.0	0.000		

TEST 1 INFILTRATION RATE

Inches per minute	0.00
Inches per hour	0.00
Inches per day	0.00

Inches per minute	0.00
Inches per hour	0.00
Inches per day	0.00

Site Name:	Snipes Tract - Lower Makefield Township			Head	or Depth of Water (H):	6 Inches
Pit # / Location:	I			Outer	Ring Diameter:	12 Inches
Date Soil Described:	October 14, 2016			Inner	Ring Diameter:	8 Inches
Personnel:	Mr. Terry Harris			Depth	of Test Below Grade:	48 Inches
Infiltration Date:	October 14, 2016			Soil E	Description:	Soil Type: PnB
Personnel:	Mr. Terry Harris	0	ТО	8	A, 10YR4/3, SIL, VF	R, GR
		8	TO	27	B1, 10YR5/8, SIL, FI	R, SBK
		27	TO	49	B2, 2.5YR5/4, SL, VI	FR, GR
		49	TO	84	B3, 2.5YR5/3, SL, VI	FR, GR
			TO			
			ТО			
			ТО			

INNER RING READINGS

		INFILTRATION	TEST 1			INFILTRATION	TEST 2		
Date	Time	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)
10/14/16	12:40 PM								
10/14/16	12:40 PM 12:55 PM	15	650	43.3	0.054	15	500	33.3	0.041
10/14/16	1:10 PM	15	700	46.7	0.058	15	460	30.7	0.038
10/14/16	1:25 PM	15	670	44.7	0.056	15	420	28.0	0.035
10/14/16	1:40 PM	15	680	45.3	0.056	15	470	31.3	0.039
10/14/16	1:55 PM	15	670	44.7	0.056	15	440	29.3	0.036

TEST 1 INFILTRATION RATE

Inches per minute	0.06
Inches per hour	3.33
Inches per day	79.95

Inches per minute	0.04
Inches per hour	2.19
Inches per day	52.50

Site Name:	Snipes Tract - Lower Makefield Township			Head	l or Depth of Water (H):	6 Inches	
Pit # / Location:	J			Oute	er Ring Diameter:	12 Inches	
Date Soil Described:	October 14, 2016			Inne	r Ring Diameter:	8 Inches	
Personnel:	Mr. Terry Harris			Dept	h of Test Below Grade:	Inches	
Infiltration Date:				Soil	Description:	Soil Type: PnB	
Personnel:		0	ТО	8	A, 10YR4/3, SIL, VFI	R, GR	
		8	TO	19	B1, 10YR5/8, SIL, FR	, SBK	
		19	TO	31	B1, 7.5YR5/8, SIL, FI	R, SBK	
		31	TO	60	B3, 5YR3/3, FLSIL, V	/FI, SBK	
		60	TO		BEDROCK		
			TO				
			ТО				

INFILTRATION TESTING WAS NOT PERFORMED AT THIS LOCATION

INNER RING READINGS

		INFILTRATION	TEST 1			INFILTRATION	N TEST 2		
Date	Time	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)

TEST 1 INFILTRATION RATE

Inches per minute Inches per hour Inches per day

TEST 2 INFILTRATION RATE

Inches per minute Inches per hour Inches per day

Site Name:	Snipes Tract - Lower Makefield Township			Head	or Depth of Water (H):	6 Inches
Pit # / Location:	Κ			Outer	Ring Diameter:	12 Inches
Date Soil Described:	October 14, 2016			Inner	Ring Diameter:	8 Inches
Personnel:	Mr. Terry Harris			Deptl	n of Test Below Grade:	48 Inches
Infiltration Date:	October 26, 2016			Soil I	Description:	Soil Type: PnB
Personnel:	Mr. James Haklar	0	ТО	7	A, 10YR4/3, SIL, VF	R, GR
		7	TO	40	B1, 7.5YR5/8, SIL, F	R, SBK
		40	TO	80	B2, 2.5YR5/3, SL, V	FR, GR
			TO			
			ТО			
			ТО			
			ТО			

INNER RING READINGS

	INFILTRATION	TEST 1			INFILTRATION	TEST 2		
Time	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)
8:25 AM								
8:40 AM	15	850	56.7	0.070	15	3,450	230.0	0.286
8:55 AM	15	850	56.7	0.070	15	3,000	200.0	0.249
9:10 AM	15	820	54.7	0.068	15	3,000	200.0	0.249
9:25 AM	15	820	54.7	0.068	15	3,000	200.0	0.249
					15	3,000	200.0	0.249
	8:25 AM 8:40 AM 8:55 AM 9:10 AM	Time Lapse (Minutes) 8:25 AM 8:40 AM 15 8:55 AM 15 9:10 AM 15	Time Lapse (Minutes) Volume Added (ml) 8:25 AM 8:40 AM 15 850 8:55 AM 15 850 9:10 AM 15 820	Time Lapse (Minutes) Volume Added (ml) Rate (I) (ml/min) 8:25 AM 8:40 AM 15 850 56.7 8:55 AM 15 850 56.7 9:10 AM 15 820 54.7	Time Lapse (Minutes) (ml) (ml/min) (inches/min) 8:25 AM 8:40 AM 15 850 56.7 0.070 8:55 AM 15 850 56.7 0.070 9:10 AM 15 820 54.7 0.068	Time Lapse (Minutes) Volume Added (ml) Rate (I) (ml/min) Infiltration Rate (I) (inches/min) Lapse (Minutes) 8:25 AM 8:25 AM 15 850 56.7 0.070 15 8:55 AM 15 850 56.7 0.070 15 9:10 AM 15 820 54.7 0.068 15 9:25 AM 15 820 54.7 0.068 15	Time Lapse (Minutes) Volume Added (ml) Rate (I) (ml/min) Infiltration Rate (I) (inches/min) Lapse (Minutes) Volume Added (ml) 8:25 AM 8:25 AM 15 850 56.7 0.070 15 3,450 8:55 AM 15 850 56.7 0.070 15 3,000 9:10 AM 15 820 54.7 0.068 15 3,000 9:25 AM 15 820 54.7 0.068 15 3,000	Time Lapse (Minutes) Volume Added (ml) Rate (I) (ml/min) Infiltration Rate (I) (inches/min) Lapse (Minutes) Volume Added (ml) Rate (I) (ml/min) 8:25 AM <t< td=""></t<>

TEST 1 INFILTRATION RATE

Inches per minute	0.07
Inches per hour	4.08
Inches per day	97.85

Inches per minute	0.25
Inches per hour	14.92
Inches per day	357.98

Site Name:	Snipes Tract - Lower Makefield Township			Head or	Depth of Water (H):	6 Inches	
Pit # / Location:	L			Outer R	ing Diameter:	12 Inches	
Date Soil Described:	October 14, 2016			Inner Ri	ng Diameter:	8 Inches	
Personnel:	Mr. Terry Harris			Depth of	f Test Below Grade:	Inches	
Infiltration Date:				Soil Des	cription:	Soil Type: PnB	
Personnel:		0	ТО	8	A, 10YR4/3, SIL, VFR	, GR	
		8	ТО	20	B1, 10YR5/8, SIL, FR,	SBK	
		20	ТО		BEDROCK		
			ТО				
			ТО				
			ТО				
			то				

INFILTRATION TESTING WAS NOT PERFORMED AT THIS LOCATION

INNER RING READINGS

	INFILTRATION TEST 1						INFILTRATION TEST 2				
Date	Time	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)		

TEST 1 INFILTRATION RATE

Inches per minute Inches per hour Inches per day

TEST 2 INFILTRATION RATE

Inches per minute Inches per hour Inches per day

Site Name:	Snipes Tract - Lower Makefield Township			Head or	Depth of Water (H):	6 Inches	
Pit # / Location:	М			Outer R	ing Diameter:	12 Inches	
Date Soil Described:	October 14, 2016			Inner R	ing Diameter:	8 Inches	
Personnel:	Mr. Terry Harris			Depth o	of Test Below Grade:	Inches	
Infiltration Date:				Soil De	scription:	Soil Type: PnB	
Personnel:		0	ТО	9	A, 10YR4/3, SIL, VFR	, GR	
		9	ТО	34	B1, 10YR5/8, SIL, FR,	SBK	
		34	ТО		BEDROCK		
			ТО				
			ТО				
			ТО				
			ТО				

INFILTRATION TESTING WAS NOT PERFORMED AT THIS LOCATION

INNER RING READINGS

	INFILTRATION TEST 1						INFILTRATION TEST 2				
Date	Time	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)		

TEST 1 INFILTRATION RATE

Inches per minute Inches per hour Inches per day

TEST 2 INFILTRATION RATE

Inches per minute Inches per hour Inches per day

Site Name:	Snipes Tract - Lower Makefield Township			Head	or Depth of Water (H):	6 Inches
Pit # / Location:	Ν			Outer	Ring Diameter:	12 Inches
Date Soil Described:	October 14, 2016			Inner	Ring Diameter:	8 Inches
Personnel:	Mr. Terry Harris			Deptl	of Test Below Grade:	48 Inches
Infiltration Date:	October 26, 2016			Soil I	Description:	Soil Type: PnB
Personnel:	Mr. James Haklar	0	ТО	7	A, 10YR4/3, SIL, VF	R, GR
		7	TO	24	B1, 10YR5/8, SIL, FI	R, SBK
		24	TO	44	B2, 2.5YR5/3, SL, VI	FI, GR
		44	ТО	84	B3, 2.5YR5/3, SL, VI	FR, GR
			TO			
			ТО			
			ТО			

INNER RING READINGS

		INFILTRATION	N TEST 1			INFILTRATION	TEST 2		
Date	Time	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)
10/26/16	8:20 AM								
10/26/16	8:35 AM	15	100	6.7	0.008	15	200	13.3	0.017
10/26/16	8:50 AM	15	50	3.3	0.004	15	150	10.0	0.012
10/26/16	9:05 AM	15	30	2.0	0.002	15	150	10.0	0.012
10/26/16	9:20 AM	15	20	1.3	0.002	15	150	10.0	0.012

TEST 1 INFILTRATION RATE

Inches per minute	0.00
Inches per hour	0.10
Inches per day	2.39

Inches per minute	0.01
Inches per hour	0.75
Inches per day	17.90

Site Name:	Snipes Tract - Lower Makefield Township			Head or	Depth of Water (H):	6 Inches	
Pit # / Location:	0			Outer R	ing Diameter:	12 Inches	
Date Soil Described:	October 26, 2016			Inner R	ing Diameter:	8 Inches	
Personnel:	Mr. Terry Harris			Depth o	of Test Below Grade:	Inches	
Infiltration Date:				Soil De	scription:	Soil Type: PnB	
Personnel:			ТО	8	A, 10YR4/3, SIL, VFR, GR		
		8	TO	43	B1, 10YR5/8, SIL, FR,	SBK	
		43	TO	64	B2, 5YR3/3, FLSIL, V	FI, SBK	
			TO				
			TO				
			TO				
			ТО				

INFILTRATION TESTING WAS NOT PERFORMED AT THIS LOCATION

INNER RING READINGS

		INFILTRATIO	N TEST 1	INFILTRATION	N TEST 2				
Date	Time	Lapse (Minutes	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) (ml/min)	Infiltration Rate (I) (inches/min)
	<u>г </u>		1	[· · · · · · · · · · · · · · · · · · ·			[

TEST 1 INFILTRATION RATE

Inches per minute Inches per hour Inches per day

TEST 2 INFILTRATION RATE

Inches per minute Inches per hour Inches per day

SITE INVESTIGATION AND PERCOLATION TEST REPORT FOR STORMWATER INFILTRATION

	ite Locati		nipes			Municipa	llity: Lowe	r Makefie	eld	Cour	nty: <u>Bucks</u>	
So	oil Type:	PnB										
	Descriptio Description		ed by:	Terry Harris	, SEO #02596	5			Date	e: May 10,	2017	
	Test Pit # P Additional Pits											
	Inches					ription of H	orizon					
0		8 34		85/4, SIL, FF								
8			-	R6/6, SIL, F								
34		68 96	-	'R4/4, SIL, F								
68	<u>в то 9</u> то	90	D3, 2.3 f	'R4/4, VCBS	DIL, FI, ODN							
	то									Dep	oth to Limiting	Zone
											> 96 Incl	
	olation Test		ted by:	James Hakl	ar				Date	e: May 10,	2017	
			•							<u> </u>		
Test	depth below	w existing	g grade:	5 Feet								
	ther Conditi	ons:		w 40 F		or above	X Dr		Rain, Sleet, S			
3011 0	Conditions:		Wet	X Dry	/	Frozen		24 110	ur Presoak	Yes X	No	
					Reading	Reading	Reading	Reading	Reading	Reading	Reading	Reading
		ŀ	***		No. 1:	No. 2:	No. 3:	No. 4:	No. 5:	No. 6:	No. 7:	No. 8:
				Reading	Inches of	Inches of	Inches of	Inches o	f Inches of	Inches of	Inches of	Inches of
	Hole No.	Yes	No	Interval	Drop	Drop	Drop	Drop	Drop	Drop	Drop	Drop
	1	х		XX / 30	0.375	0.250	0.250	0.250				
	2	X		XX / 30	0.250	0.375	0.250	0.250				
	3 *** Wat	X X	ning in the	XX / 30	0.125	0.125	0.125	0.125	inute interval; No	use 10 min	ute interval	
	vva						presoak: re	5, use 50 m				
		-	Drop durin			-		lr.	nfiltration Rate			
			Jrop durin	q	Perc. Rate as	L	Depth of					
	Hole No				Minutes / Inch		•			or from BM	P Manual Δr	nlied)
	Hole No.		final perio		Minutes / Inch		Hole		Reduction Fact	or from BM	P Manual Ap	oplied)
_	1*		final perio 0.250		120.00		Hole 12 "		Reduction Fact			
_	1* 2		final perio 0.250 0.250		120.00 120.00		Hole 12 " 12 "		Reduction Fact	olation Rate	(minutes / ine	
	1*		final perio 0.250		120.00		Hole 12 "		Reduction Fact 180.00 Perc 6.00 Initia	colation Rate al Water Dep	(minutes / ind th (Inches)	ch)
-	1* 2		final perio 0.250 0.250		120.00 120.00		Hole 12 " 12 "		Reduction Fact 180.00 Perc 6.00 Initia 0.188 Aver	colation Rate al Water Dep rage / Final V	(minutes / ind th (Inches) Vater Level D	ch) rop (Inches)
-	1* 2		final perio 0.250 0.250		120.00 120.00		Hole 12 " 12 "		Reduction Fact 180.00 Perc 6.00 Initia 0.188 Aver	colation Rate al Water Dep rage / Final V	(minutes / ind th (Inches)	ch) rop (Inches)
	1* 2		final perio 0.250 0.250		120.00 120.00		Hole 12 " 12 "		Reduction Fact 180.00 Perc 6.00 Initia 0.188 Aver	colation Rate al Water Dep rage / Final V	(minutes / ind th (Inches) Vater Level D	ch) rop (Inches)
	1* 2		final perio 0.250 0.250		120.00 120.00		Hole 12 " 12 "		Reduction Fact 180.00 Perconstruction 6.00 Initia 0.188 Aver 8.00 Diam	colation Rate al Water Dep rage / Final V neter of Perc	(minutes / ind th (Inches) Vater Level D olation Holes	ch) rop (Inches) (Inches)
	1* 2	 	final perio 0.250 0.250 0.125	d	120.00 120.00 240.00		Hole <u>12</u> " <u>12</u> " <u>12</u> "		Reduction Fact 180.00 Perc 6.00 Initia 0.188 Aver 8.00 Dian 0.33 Con	colation Rate al Water Dep age / Final V neter of Perco verted Perco	(minutes / ind th (Inches) Vater Level D olation Holes lation Rate (ir	ch) rop (Inches) (Inches) nches / hour)
	1* 2	Total of	final perio 0.250 0.250 0.125 Minutes /	d	120.00 120.00 240.00 360.00		Hole <u>12</u> <u>12</u> <u>12</u> <u>12</u> <u>12</u> <u>180.00</u>	(I	Reduction Fact 180.00 Perc 6.00 Initia 0.188 Aver 8.00 Dian 0.33 Con	colation Rate al Water Dep age / Final V neter of Perco verted Perco	(minutes / ind th (Inches) Vater Level D olation Holes	ch) rop (Inches) (Inches) nches / hour)
	1* 2	Total of	final perio 0.250 0.250 0.125	d	120.00 120.00 240.00		Hole <u>12</u> <u>12</u> <u>12</u> <u>12</u> <u>12</u> <u>180.00</u>		Reduction Fact 180.00 Perc 6.00 Initia 0.188 Aver 8.00 Dian 0.33 Con	colation Rate al Water Dep age / Final V neter of Perco verted Perco	(minutes / ind th (Inches) Vater Level D olation Holes lation Rate (ir	ch) rop (Inches) (Inches) nches / hour)

Site Name:	Snipes Tract
Pit # / Location:	Pit Q
Date Soil Described:	May 10, 2017
Personnel:	Terry Harris
Infiltration Date:	May 10, 2017
Personnel:	Matt Roberts

			Head of	or Depth of Water (H):	6 Inches				
			Outer	Ring Diameter:	12 Inches				
			Inner l	Ring Diameter:	8 Inches				
			Depth	of Test Below Grade:	54 Inches				
			Soil D	escription:	Soil Type: PnB				
	0	то	12	A, 7.5YR4/2, SIL, FI,	I, PL, FEW / FAINT MOTTLES				
	12	TO	34	B1, 7.5YR4/2, SIL, F	R, SBK				
	34	то	51	B2, 7.5YR4/4, SIL, F	R, SBK				
	51	то	75	B3, 10YR6/6, SIL, FF	R, SBK				
	75	ТО	80	B4, 2.5YR4/4, SIL, F	I, SBK				
		ТО							
		то							
-	51	TO TO TO	75	B3, 10YR6/6, SIL, FF	, SBK				

INNER RING READINGS

	INFILTRATION TEST 1							INFILTRATION TEST 2				INFILTRATION TEST 3			
Date	Time	Lapse (min.)	Volume Added (ml)	Rate (I) (ml/ min)	Infiltration Rate (I) (in./min.)		Lapse (min.)	Volume Added (ml)	Rate (I) (ml/ min)	Infiltration Rate (I) (in./min.)		Lapse (min.)	Volume Added (ml)	Rate (I) (ml/ min)	
			1	1		-			1		-		r	r	
5/10/17	8:15 AM														
5/10/17	8:30 AM	15	30	2.0	0.002		15	100	6.7	0.008		15	0	0.0	
5/10/17	8:45 AM	15	50	3.3	0.004		15	200	13.3	0.017		15	150	10.0	
5/10/17	9:00 AM	15	30	2.0	0.002		15	180	12.0	0.015		15	70	4.7	
5/10/17	9:15 AM	15	30	2.0	0.002	-	15	250	16.7	0.021		15	80	5.3	
						-									
						-									
			ST 1 INF		TION RATE 0.00	L		ST 2 INF hes per r		TION RATE 0.02			ST 3 INF hes per r		

TEST 3

.	Volume	Rate (I)	Infiltration
Lapse	Added		Rate (I)
(min.)	(ml)	min)	(in./min.)

0.000

0.012

0.006

0.007

ILTRATION RATE

Inches per minute	0.01
Inches per hour	0.40
Inches per day	9.55

;	0.00	Inches per minut
	0.15	Inches per hour
	3.58	Inches per day

Inches per hour

Inches per day

0.27 Inches per Hour (Average of Test 1 and 3, highest rate not utilized per BMP Manual)

1.24

29.83

Page 1 of 1

Site Name:	Snipes Tract
Pit # / Location:	Pit R
Date Soil Described:	May 10, 2017
Personnel:	Terry Harris
Infiltration Date:	May 10, 2017
Personnel:	Matt Roberts

		Head	l or Depth of Water (H):	6 Inches	
	Outer Ring Diameter:		r Ring Diameter:	12 Inches	
		Inner	r Ring Diameter:	8 Inches	
		Dept	h of Test Below Grade:	48 Inches	
		Soil	Description:	Soil Type: PnB	
0	ТО	13	FILL, 7.5YR4/3, SIL,	FR, SBK	
13	TO	24	Ab, 7.5YR4/4, SIL, F	R, SBK	
24	TO	48	B1, 7.5YR5/6, SIL, F	R, SBK	
48	TO	75	B2, 2.5YR4/4, SIL, F	I, SBK	
	TO				
	TO				
	TO				

INNER RING READINGS

Date	Time	Lapse (min.)
5/10/17	8:40 AM	
5/10/17	8:55 AM	15
5/10/17	9:10 AM	15
5/10/17	9:25 AM	15
5/10/17	9:40 AM	15

INFILTRATION TEST 2

15

15

15

15

Lapse	Volume	Rate (I)	Infiltration
1	Added	(ml/	Rate (I)
(min.)	(ml)	min)	(in./min.)

			-		
0	0.0	0.000		15	
0	0.0	0.000		15	
0	0.0	0.000		15	
0	0.0	0.000		15	

TEST 2 INFILTRATION RATE

Inches per minute	0.00
Inches per hour	0.00
Inches per day	0.00

15	0	0.0	0.000
15	0	0.0	0.000
15	0	0.0	0.000
15	0	0.0	0.000

INFILTRATION TEST 3

Added

(ml)

Lapse

(min.)

Volume Rate (I)

(ml/

min)

Infiltration

Rate (I)

(in./min.)

TEST 3 INFILTRATION RATE

Inches per minute	0.00
Inches per hour	0.00
Inches per day	0.00

Page 1 of 1

Inches per Hour 0.00

TEST 1 INFILTRATION RATE

INFILTRATION TEST 1

Added

(ml)

0

0

0

0

Inches per minute

Inches per hour

Inches per day

Volume Rate (I)

(ml/

min)

0.0

0.0

0.0

0.0

Infiltration

Rate (I)

(in./min.)

0.000

0.000

0.000

0.000

0.00

0.00

0.00

Site Name:	Snipes Tract
Pit # / Location:	Pit S
Date Soil Described:	May 10, 2017
Personnel:	Terry Harris
Infiltration Date:	May 10, 2017
Personnel:	James Haklar

		Head o	or Depth of Water (H):	6 Inches	
		Outer Ring Diameter:		12 Inches	
		Inner F	Ring Diameter:	8 Inches	
		Depth	of Test Below Grade:	72 Inches	
		Soil De	escription:	Soil Type: PnB	
0	то	7	A, 7.5YR5/4, SIL, FR	R, SBK	
7	ТО	30	B1, 10YR6/6, SIL, FF	R, SBK	
30	ТО	84	B2, 2.5YR4/4, SIL, F	I/FR, SBK	
84	ТО		BEDROCK		
	ТО				
	ТО				
	ТО				

INNER RING READINGS

Date	Time	Lapse (min.)
5/10/17	9:15 AM	
5/10/17	9:30 AM	15
5/10/17	9:45 AM	15
5/10/17	10:00 AM	15
5/10/17	10:15 AM	15

INFILTRATION TEST 2

Lapse	Volume	Rate (I)	Infiltration
1	Added	(ml/	Rate (I)
(min.)	(ml)	min)	(in./min.)

15	0	0.0	0.000
15	0	0.0	0.000
15	0	0.0	0.000
15	0	0.0	0.000

TEST 2 INFILTRATION RATE

Inches per minute	0.00
Inches per hour	0.00
Inches per day	0.00

INFILTRATION TEST 3

Lapse	Volume	Rate (I)	Infiltration
(min.)	Added	(ml/	Rate (I)
(11111.)	(ml)	min)	(in./min.)

15	460	30.7	0.038
15	260	17.3	0.022
15	200	13.3	0.017
15	180	12.0	0.015
15	170	11.3	0.014

TEST 3 INFILTRATION RATE

Inches per minute	0.01
Inches per hour	0.85
Inches per day	20.29

Inches per day 0.00

TEST 1 INFILTRATION RATE

INFILTRATION TEST 1

Added

(ml)

0

0

0

0

Inches per minute

Inches per hour

Volume Rate (I)

(ml/

min)

0.0

0.0

0.0

0.0

Infiltration

Rate (I)

(in./min.)

0.000

0.000

0.000

0.000

0.00

0.00

* Inches per Hour

SOIL DESCRIP	TIONS		Sheet 1 of 1
Site Location: Municipality:	Snipes Tract Lower Makefield Township	County: Bucks	
Soils Descrip	otion Complete by: <u>Terry Harris, SEO# 02596</u>		Date: <u>May 10, 2017</u>
Test Pit # <u>L</u>	Soil Type: <u>PnB</u>	Limiting Zone (Inches):	
TO "	Test pit performed to confirm depth and com	petency of bedrock.	
то"	Bedrock encountered at 20" below soil surfac	e, pit extended to a total depth of 4	18" below the soil surface.
TO"	Bedrock was relatively easily excavated utilizit	ng a standard backhoe.	
TO"			
то"			
Test Pit # <u>T</u> Inches	Soil Type: PnB	Limiting Zone (Inches): _	
TO"	Test pit performed to confirm depth and com	petency of bedrock.	
то"	Bedrock encountered at 37" below soil surface	e, pit extended to a total depth of 4	18" below the soil surface.
то"	Bedrock was relatively easily excavated utilizi	ng a standard backhoe.	
TO"			
TO"			
Test Pit # <u>U</u>	Soil Type: PnB	Limiting Zone (Inches):	
TO"	Test pit performed to confirm depth and com	petency of bedrock.	
TO"	Bedrock encountered at 65" below soil surfac	e, pit extended to a total depth of s	96" below the soil surface.
TO"	Bedrock was relatively easily excavated utilizit	ng a standard backhoe.	
TO"			
TO"			
Test Pit # <u>V</u> Inches	Soil Type: PnB	Limiting Zone (Inches):	
TO "	Test pit performed to confirm depth and com	petency of bedrock.	
то"	Bedrock encountered at 96" below soil surfac		114" below the soil surface.
то"	Bedrock was relatively easily excavated utilizi	ng a standard backhoe.	
то"			
то"			
Test Pit # <u>W</u>	Soil Type: PnB	Limiting Zone (Inches): _	
то"	Test pit performed to confirm depth and com	petency of bedrock.	
то"	Bedrock encountered at 72" below soil surfac	e, pit extended to a total depth of 8	39" below the soil surface.
TO"	Bedrock was relatively easily excavated utilizi	ng a standard backhoe.	
TO"			

WORKSHEETS 1 THROUGH 5, 10

STORMWATER BMP INFORMATION CHART 5.B

Worksheet 4. Change in Runoff for 2-YR Storm Event

PROJECT:	Snipes Tract Athletic Fields
	35.40 Ac.
2-Year Rainfall:	<u>3.36</u> in.
Total Site Area:	35.40 acres
Protected Site Area:	10.45 acres
Managed Area:	24.96 acres

Existing Conditions:

Cover Type/Condition	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Woodland	В	763,567	17.53	55	8.18	1.64	0.30	19,085
Woodland	С	56,278	1.29	70	4.29	0.86	0.92	4,328
Meadow	В	90,004	2.07	58	7.24	1.45	0.40	2,995
Meadow	С	101,815	2.34	71	4.08	0.82	0.98	8,279
Meadow	D	49,952	1.15	78	2.82	0.56	1.39	5,794
Impervious	B/D	25,718	0.59	98	0.20	0.04	3.13	6,702
TOTAL:		1,087,334	24.96				7.12	47,182

Developed Conditions:

Cover Type/Condition	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Lawn	В	670,739	15.40	61	6.39	1.28	0.51	28,571
Lawn	С	77,164	1.77	74	3.51	0.70	1.14	7,358
Lawn	D	143,936	3.30	80	2.50	0.50	1.53	18,304
Woods	С	12,391	0.28	70	4.29	0.86	0.92	953
Impervious	B/C/D	183,104	4.20	98	0.20	0.04	3.13	47,713
TOTAL:		1,087,334	24.96				7.23	102,899

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

1. Runoff (in) = Q = $(P-0.2S)^2 / (P+0.8S)$ where P = 2-Year Rainfall (in) S = (1000/CN)-102. Runoff Volume (CF) = Q x Area x 1/12 Q = Runoff (in) Area = Land Use Area (Sq. ft) Note: Runoff Volume must be calculated for EACH land use type/condition and HSGI. The use of a weighted CN value for volume calculations is not acceptable.

3930-PM-WM0035 Rev. 12/2009

891,839

Infiltration Trench Calculations

1. Infiltration Trench from Inlet #2 to Inlet #3

Length = $\underline{170 \text{ feet}}$, Width = $\underline{45 \text{ feet}}$ Surface Area = $\underline{7,650 \text{ sf}}$ Design Infiltration Rate = $1.52/2 = \underline{0.760''/hr}$ 2 Year Storm Runoff Volume = $\underline{44,345 \text{ cf}}$

- Dewatering Time = <u>44,345 cf</u> = 92 hrs > 72 hrs , use 24 hrs (0.76"/hr)(1 ft/12")(7,650 sf)
- Infiltration Volume = (24 hr)(0.76"/hr)(1ft/12")(7,650 sf) = <u>11,628 cf</u>
- Storage Volume

Stone = 5.0(170 feet)(45 feet)(0.40 Voids Ratio) = <u>15,300 cf</u> $Pipe = <math>.6(3.412 \text{ sf})(170 \text{ ft})\{(.5(0.4+1.9)/2.0\} = <u>184 \text{ cf}</u>$ Total Storage = <u>15,484 cf</u>

• Managed Volume = 11,628 cf + 15,484 cf = <u>27,112 cf</u>

Infiltration Trench Calculations

3. Infiltration Trench from Inlet #18 to Inlet #22

Length = <u>640 feet</u>, Width = <u>10 feet</u> Surface Area = <u>6,400 sf</u> Design Infiltration Rate = <u>2.38"/hr</u> 2 Year Storm Runoff Volume = <u>17,037 cf</u>

- Dewatering Time = <u>17,037 cf</u> = 14 hrs < 72 hrs (2.38"/hr)(1 ft/12")(6,400 sf)
- Managed Volume = Infiltrated Volume = <u>17,037 cf</u>

Worksheet 4. Change in Runoff for 2-YR Storm Event

PROJECT:	Snipes Tract Athletic Fields Infiltration Trench I#2
	12.13 Ac.
2-Year Rainfall:	<u>3.36</u> in.
Total Site Area:	12.13 acres
Protected Site Area:	acres
Managed Area:	12.13 acres

Existing Conditions:

Cover Type/Condition	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Woodland	В		0.00	55	8.18	1.64	0.30	0
Woodland	С		0.00	70	4.29	0.86	0.92	0
Meadow	В		0.00	58	7.24	1.45	0.40	0
Meadow	С		0.00	71	4.08	0.82	0.98	0
Meadow	D		0.00	78	2.82	0.56	1.39	0
Impervious	B/D		0.00	98	0.20	0.04	3.13	0
TOTAL:		0	0.00				7.12	0

Developed Conditions:

Cover Type/Condition	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Lawn	В	251,136	5.77	61	6.39	1.28	0.51	10,697
Lawn	С	77,164	1.77	74	3.51	0.70	1.14	7,358
Woods	В	31,659	0.73	55	8.18	1.64	0.30	791
Woods	С	100,074	2.30	70	4.29	0.86	0.92	7,695
Impervious	B/C	68,320	1.57	98	0.20	0.04	3.13	17,803
TOTAL:		528,353	12.13				6.01	44,345

2-Year Volume Increase (ft³): 44,345

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

1. Runoff (in) = Q = $(P-0.2S)^2 / (P+0.8S)$ where P = 2-Year Rainfall (in) S = (1000/CN)-102. Runoff Volume (CF) = Q x Area x 1/12 Q = Runoff (in) Area = Land Use Area (Sq. ft)

Note: Runoff Volume must be calculated for EACH land use type/condition and HSGI. The use of a weighted CN value for volume calculations is not acceptable.

359,959

Worksheet 4. Change in Runoff for 2-YR Storm Event

PROJECT:	Snipes Tract Athletic Fields Infiltration Trench I#18
	5.24 Ac.
2-Year Rainfall:	<u>3.36</u> in.
Total Site Area:	5.24 acres
Protected Site Area:	acres
Managed Area:	5.24 acres

Existing Conditions:

Cover Type/Condition	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Woodland	В		0.00	55	8.18	1.64	0.30	0
Woodland	С		0.00	70	4.29	0.86	0.92	0
Meadow	В		0.00	58	7.24	1.45	0.40	0
Meadow	С		0.00	71	4.08	0.82	0.98	0
Meadow	D		0.00	78	2.82	0.56	1.39	0
Impervious	B/D		0.00	98	0.20	0.04	3.13	0
TOTAL:		0	0.00				7.12	0

Developed Conditions:

Cover Type/Condition	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Lawn	В	171,141	3.93	61	6.39	1.28	0.51	7,290
Lawn	С		0.00	74	3.51	0.70	1.14	0
Woods	В	21,673	0.50	55	8.18	1.64	0.30	542
Woods	С		0.00	70	4.29	0.86	0.92	0
Impervious	B/C	35,327	0.81	98	0.20	0.04	3.13	9,205
TOTAL:		228,141	5.24				6.01	17,037

2-Year Volume Increase (ft³):

17,037

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

1. Runoff (in) = Q = $(P-0.2S)^2 / (P+0.8S)$ where

P = 2-Year Rainfall (in)

S = (1000/CN)-10

2. Runoff Volume (CF) = Q x Area x 1/12

Q = Runoff (in)

Area = Land Use Area (Sq. ft)

Note: Runoff Volume must be calculated for EACH land use type/condition and HSGI. The use of a weighted CN value for volume calculations is not acceptable.

192,814

Worksheet 1. General Site Information	
INSTRUCTIONS: Fill out Worksheet 1 for each watershed	
Date: November 16, 2016	
Project Name: Snipes Tract Athletic Fields	
Municipality: Lower Makefield Township	
County: Bucks County	
Total Area (acres): 36.26 acres	
Major River Basin: Delaware River	
Watershed: Delaware River South	
Sub-Basin: Buck Creek	
Nearest Surface Water(s) to Receive Runoff: Buck Creek	
Chapter 93 – Designated Water Use/Existing Water Use: WWF (Warm Water Fishes, MF (Migratory Fishes)	
Impaired according to Category 4 or 5 of the Integrated Water Quality Monitoring and Assessment Report?	Yes 🗌 No 🕱
List Causes of Impairment:	
Is there an established TMDL that applies: Yes No No Total Maximum Daily Loads (TMDLS)	
Is project subject to, or part of:	
Municipal Separate Storm Sewer System (MS4) Requirements?	Yes 🗴 No 🗌
Existing or planned drinking water supply?	Yes 🗌 No 🗶
If yes, distance from proposed discharge (miles):	
Approved Act 167 Plan?	Yes 🗶 No 🗌
Frieding Diver Concernation Disc	V – N –
Existing River Conservation Plan?	Yes 🗌 No 🕱

Appendix D. Worksheets

Wetlands Woodlands

Other:

Natural Drainage Ways Steep Slopes, 15% - 25%

Steep Slopes, over 25% Other: Steep slopes 8% to 15%

TOTAL EXISTING:

INST	RUCTIONS							
1.	Provide Sensitive Resources Map according to non-structural BMP 5.4.1 in Chapter 5. This map should identify wetlands, woodlands, natural drainage ways, steep slopes, and other sensitive natural areas.							
2.	Summarize the existing exte Table (below, using Acres).			ing Sensitive Resources				
3.	Summarize Total Protected A	rea as defined under l	3MPs in Chapter 5.					
4.	Do not count any area twice. only be considered once.	For example, an are	a that is both a flood	plain and a wetland may				
	EXISTING NATURAL SENSITIVE RESOURCE	MAPPED? Yes/no/n/a	TOTAL AREA (Ac.)	PROTECTED AREA (Ac.)				
Wate	erbodies							
	dplains							
Ripa	rian Areas							

Yes

Yes

0.16

0.97

1.13

0.08

0.485

0.565

Worksheet 3. Nonstructural BMP Credits from PA Stormwater Best Management Practices Manual (SW BMP Manual)										
PROTECTED AREA										
1.1 Area of Protected Sensitive/Special Value Features (see WS 2) <u>0.57</u> Ac.										
1.2 Area of Riparian Forest Buffer Protection (see WS 2) Ac.										
3.1 Area of Minimum Disturbance/Reduced Grading (See Chapter 8, page 21 – SW9.88 Ac BMP Manual)										
TOTAL <u>10.45</u> Ac										
Protected										
Site Area Minus Area = Stormwater Management Area										
35.4 - 10.45 = 24.96										
This is the area that requires stormwater management										
VOLUME CREDITS										
3.1 Minimum Soil Compaction (See Chapter 8, page 22 – SW BMP Manual)										
Lawn $891,839$ ft ² x 1/4" x 1/12 = 18,580 ft ³										
Meadow ft^2 x 1/3" x 1/12 = ft^3										
3.3 Protect Existing Trees (See Chapter 8, page 23 – SW BMP Manual)										
For Trees within 100 feet of impervious area:										
Tree Canopy 12,391 ft ² x 1/2" x 1/12 = 516 ft ³										
5.1 Disconnect Roof Leaders to Vegetated Areas (See Chapter 8 page 25 – SW BMP Manual)										
For runoff directed to areas protected under 5.8.1 and 5.8.2										
Roof Area ft^2 x 1/3" x 1/12 = ft^3										
For all other disconnected roof areas										
Roof Area <u>5,425</u> ft^2 x 1/4" x 1/12 = <u>113</u> ft^3										
5.2 Disconnect Non-Roof impervious to Vegetated Areas (See Chapter 8, page 26 – SW BMP Manual)										
For Runoff directed to areas protected under 5.8.1 and 5.8.2										
Impervious Area ft^2 x 1/3" x 1/12 = ft^3										
For all other disconnected roof areas										
Impervious Area <u>163,895</u> ft^2 x 1/4" x 1/12 = <u>3,414</u> ft^3										
TOTAL NON-STRUCTURAL VOLUME CREDIT * 22,624 ft *For use on Worksheet 5										

Worksheet 4. Change in Runoff Volume for 2-YR Storm Event

PROJECT:	Snipes Tract Athletic Fields				
Drainage Area:					
2-Year Rainfall:	in				
Total Site Area:	acres				
Protected Site Area:	acres				

Existing Conditions:

Managed Area:

Cover Type/Condition	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Woodland								
Meadow								
Impervious								
TOTAL:								

acres

Developed Conditions

Cover Type/Condition	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
TOTAL:								

2-Year Volume Increase (ft3):

2-Year Volume Increase = Developed Conditions Runoff Volume – Existing Conditions Runoff Volume

1. Runoff (in) = Q = $(P-0.2S)^2 / (P+0.8S)$ where

P = 2-Year Rainfall (in)

S = (1000/ CN)-10

2. Runoff Volume (CF) = Q x Area x 1/12

Q = Runoff (in)

Area = Land use area (sq. ft)

Note: Runoff Volume must be calculated for EACH land use type/condition and HSGI. The use of a weighted CN value for volume calculations is not acceptable.

Worksheet 5. Structural BMP Volume Credits

PROJECT: SUB-BASIN:	Snipes Tract Athletic Fields Buck Creek/ Delaware River South	
	Required Control Volume (ft ³) – <i>from Worksheet 4</i> :	55,717 cf
No	n-structural Volume Credit (ft ³) – <i>from Worksheet 3</i> : (maximum is 25% of required volume)	13,929 cf
	Structural Volume Reqmt (ft ³)	41,788 cf
(Req	uired Control Volume minus Non-structural Credit)	

Proposed BM	Ps from PA Stormwater Best Management Practices Manual	Area	Volume Reduction Permanently Removed
0.4.4	Chapter 6	(ft ²)	(ft ³)
6.4.1	Porous Pavement		
6.4.2	Infiltration Basin		
6.4.3	Infiltration Bed		
6.4.4	Infiltration Trench	14,050 sf	44,149 cf
6.4.5	Rain Garden/Bioretention		
6.4.6	Dry Well / Seepage Pit		
6.4.7	Constructed Filter		
6.4.8	Vegetated Swale		
6.4.9	Vegetated Filter Strip		
6.4.10	Berm		
6.5.1	Vegetated Roof		
6.5.2	Capture and Re-use		
6.6.1	Constructed Wetlands		
6.6.2	Wet Pond / Retention Basin		
6.7.1	Riparian Buffer/Riparian Forest Buffer Restoration		
6.7.2	Landscape Restoration / Reforestation		
6.7.3	Soil Amendment		
6.8.1	Level Spreader		
6.8.2	Special Storage Areas		
Other			

Total Structural Volume (ft³): Structural Volume Requirement (ft³): 44,149 cf 41,788 cf **CE** 2,361 cf

DIFFERENCE

Worksheet 10 – Water Quality Compliance for Nitrate

Does the site design incorporate the following BMPs to address nitrate pollution? A summary "yes" rating is achieved if at least 2 Primary BMPs for nitrate are provided across the site or 4 secondary BMPs for nitrate are provided across the site (or the equivalent) "provided across the site" is taken to mean the specifications for that BMP set forward in Sections 5 and 6 are satisfied.

Proposed BMPs from PA Stormwater Best Management Practices Manual Chapter 5 & 6

	Yes	No
Primary BMPs for Nitrate:	x	
NS BMP 5.4.2 – Protect/Conserve/Enhance Riparian Buffers		x
NS BMP 5.5.4 – Cluster Uses at Each Site	x	
NS BMP 5.6.1 – Minimize Total Disturbed Area	x	
NS BMP 5.6.3 – Re-Vegetate/Re-Forest Disturbed Areas (Native Species)		x
NS BMP 5.9.1 – Street Sweeping/Vacuuming	X	
Structural BMP 6.7.1 – Riparian Buffer Restoration		X
Structural BMP 6.7.2 – Landscape Restoration	X	
Secondary BMPs for Nitrate:		
NS BMP 5.4.1 – Protect Sensitive/Special Value Features	X	
NS BMP 5.4.3 – Protect/Utilize Natural Drainage Features	X	
NS BMP 5.6.2 – Minimize Soil Compaction	x	
Structural BMP 6.4.5 – Rain Garden/Bioretention		x
Structural BMP 6.4.8 – Vegetated Swale		x
Structural BMP 6.4.9 – Vegetated Filter Strip	X	
Structural BMP 6.6.1 – Constructed Wetland		x
Structural BMP 6.7.1 – Riparian Buffer Restoration		x
Structural BMP 6.7.2 – Landscape Restoration	X	
Structural BMP 6.7.3 – Soils Amendment/Restoration		x

			Stor	rmwate	er BMP	Informa	ation C	hart 5.B	s revise	d Marc	ch 15, 2	016						
		_											-					
			Infiltr	ration Info	rmation		Drainage Information			BMP Information								
	Proposed Structural BMPs (site specific)	Measured Infiltration Rate ⁹ <i>in./hr.</i>	Factor of Safety <i>Min. of 2</i>	Design Infiltration Rate in./hr.	Dewatering Time ¹ hrs.	Elevation of Limiting Zone - Water Table, Bedrock, etc. ²	Total Drainage Area to BMP sg. ft	Total Impervious Drainage Area to BMP sg. ft.	Infiltration BMP Surface Area sg. ft.	Total Drainage Area Loading Ratio ⁶	Impervious Area Loading Ratio ⁷	Volume of Runoff Tributary to BMP During the 2yr/24hr Design Storm ⁵ <i>cf</i>	Calculated Infiltration Volume (from storms up to and including 2yr/24hr) <i>cf</i>	Calculated Managed Volume (from storms up to and including 2yr/24hr) ⁸		Infiltration Elevation Bottom of Bed/ Basin ³	Elevation of Infiltration Test ⁴	Elevation of E&S Sediment Basin Bottom (if applies)
BMP 6.4.1	Pervious Pavement w/ Infiltration Bed		-		-							-		-				
BMP 6.4.2 BMP 6.4.3	Infiltration Basin Subsurface Infiltration Bed																	
BMP 6.4.4 BMP 6.4.5	Infiltration Trench From Inlet #2 to #3 From Inlet #18 to Inlet #22 Rain Garden/Bioretention	1.44 4.75	2 2	0.72 2.38	72 14	164.0 167.5	528,353 228,140	68,320 35,327	7,650 6,400	69 36	9 6	44,345 17,037	11,628 17,037	27,112 17,037	171.00 174.00	166.00 173.00	168.3 173.0	N/A N/A
BMP 6.4.6 Other	Dry Well / Seepage Pit																	
Total									14,050				28,665	44,149				
BMP 6.4.7 BMP 6.4.8 BMP 6.4.9 BMP 6.4.10	Constructed Filter Vegetated Swale Vegetated Filter Strip Infilt. Berm & Ret. Grading																	

All information should be based on the 2-year/24-hour storm

Provide page numbers from the stormwater narrative identifying the location of the above information.

¹ Can include active infiltration time - dewatering time should not exceed 72 hours after the 2-year/24-hour storm

² Depth to limiting zone is recommended to be at least 2 ft below infiltration testing elevation/proposed infiltration elevation.

³ A maximum of 2 feet of Hydraulic head is recommended.

⁴ Provide supporting field notes/documenation from soil evaluation.

⁵ This value should be greater than or equal to the Volume to be Infiltrated or Managed by the BMP.

⁶ A maximum of 8:1 is recommended.

⁷ A maximum of 5:1 is recommended; however, in carbonate geology areas, a maximum of 3:1 is recommended.

⁸ Calculated runoff volume that is managed in ways other than infiltration to address 25 PA Code Ch 102.8(g)(2)

⁹ The infiltration testing information should be located on the plan view of the PCSM Plan and should include infiltration test elevation and rate.

Any deviations from the recommendations above should be adequately justified by a qualified professional and included with the application.

NOTE: This chart is for summary purposes only and should be consistent with all design calculations and worksheets.

APPENDIX G:

NOI REQUIRED DOCUMENTS

STANDARD E&S WORKSHEET # 22 PLAN PREPARER RECORD OF TRAINING AND EXPERIENCE IN EROSION AND SEDIMENT POLLUTION CONTROL METHODS AND TECHNIQUES

and Post Construction Stormwater Management (PCSM) design methods and techniques

NAME OF PLAN PREPARER: Maryellen Saylor, P.E.

FORMAL EDUCATION:

Name of College or Technical Institute: <u>The Pennsylvania State University</u>

Curriculum or Program:	College of Engineering, Civil	
Dates of Attendance:	From: August 1979	To: August 1983
Degree Received Bachelo	or of Science Civil Engineering	_

OTHER TRAINING:

Name of Training:	Changes to the PADEP Chapter 102 Regulations for the Reg'd Community	NPDES.MS4Permit Renewal.NPDES Workshop
Presented By:	PADEP	PADEP
Date:	November 2, 2012	January 5. 2012. May 24. 2016

EMPLOYMENT HISTORY:

Current Employer:	Boucher & James, Inc.
Telephone:	(215) 345-9400

Former Employer: Pickering, Corts	Pickering, Corts & Summerson, Inc.		
Telephone: (215) 968-9300)		

RECENT E&S PLANS PREPARED:

Name of Project:	Delancey Court	Giant Food Store	Samost Ballfields
County:	Bucks	Bucks	Bucks
Municipality:	Newtown Township	Middletown Township	Lower Makefield Township
Permit Number:			
Approving Agency:	PADEP, BCCD	BCCD	BCCD

DATE: PROJECT NAME: Snipes Tract Athletic Fields TMP: 20-016-001-001, 20-016-002 TOWNSHIP: Lower Makefield Township

Pursuant to the EPA eReporting Rule of October 22, 2015, please provide the following list of required permit data:

- Primary NAICS Code. Provide the appropriate six-digit North American Industry Classification System (NAICS pronounced nākes) code that represents the primary economic activity of the project site. If choosing other, the most up-to-date list of NAICS codes can be found on the NAICS website (part of the US Census Bureau) at <u>http://www.census.gov/eos/www/naics/</u> (find the "Downloads" list on the left side of the screen for the latest list of codes):
 - □ 236115 New Single-Family Housing Construction (except For-Sale Builders)
 - □ 236116 New Multifamily Housing Construction (except For-Sale Builders)
 - □ 236117 New Housing For-Sale Builders
 - □ 236210 Industrial Building Construction
 - □ 236220 Commercial and Institutional Building Construction
 - □ 237110 Water and Sewer Line and Related Construction
 - □ 237120 Oil and Gas Pipeline and Related Structures Construction
 - □ 237130 Power and Communication Line and Related Structures Construction
 - □ 237310 Highway, Street, and Bridge Construction
 - □ 237990 Other Heavy and Civil Engineering Construction
 - X Other NAICS code: NAICS Code 713940 Fitness and Recreational Sports Centers
- 2. Additional NAICS Code(s). Provide any additional six-digit North American Industry Classification System code(s) that represents the economic activity of the project site. More than one six-digit code may be provided.
- 3. Type of Ownership. Provide the type of facility located at the project site:
 - □ County Government
 - □ Federal Facility (U.S. Government)
 - □ Mixed Ownership (e.g. Public/Private)
 - Municipality (local)
 - □ Non-Government
 - □ School District
 - □ State Government

1. PROJECT INFORMATION

Project Name: Snipes Athletic Fields Date of Review: 10/25/2016 11:10:50 AM Project Category: Recreation, Campgrounds/parking lots, playgrounds Project Area: 40.34 acres County(s): Bucks Township/Municipality(s): LOWER MAKEFIELD ZIP Code: 19067 Quadrangle Name(s): LANGHORNE; TRENTON WEST Watersheds HUC 8: Middle Delaware-Musconetcong Watersheds HUC 12: Buck Creek-Delaware River Decimal Degrees: 40.247412, -74.873235 Degrees Minutes Seconds: 40° 14' 50.6815" N, 74° 52' 23.6450" W

2. SEARCH RESULTS

Agency	Results	Response
PA Game Commission	No Known Impact	No Further Review Required
PA Department of Conservation and Natural Resources	No Known Impact	No Further Review Required
PA Fish and Boat Commission	Potential Impact	FURTHER REVIEW IS REQUIRED, See Agency Response
U.S. Fish and Wildlife Service	No Known Impact	No Further Review Required

As summarized above, Pennsylvania Natural Diversity Inventory (PNDI) records indicate there may be potential impacts to threatened and endangered and/or special concern species and resources within the project area. If the response above indicates "No Further Review Required" no additional communication with the respective agency is required. If the response is "Further Review Required" or "See Agency Response," refer to the appropriate agency comments below. Please see the DEP Information Section of this receipt if a PA Department of Environmental Protection Permit is required.

Note that regardless of PNDI search results, projects requiring a Chapter 105 DEP individual permit or GP 5, 6, 7, 8, 9 or 11 in certain counties (Adams, Berks, Bucks, Carbon, Chester, Cumberland, Delaware, Lancaster, Lebanon, Lehigh, Monroe, Montgomery, Northampton, Schuylkill and York) must comply with the bog turtle habitat screening requirements of the PASPGP.

Snipes Athletic Fields

Project Boundary

Buffered Project Boundary

Service Layer Credits: Sources: Esri, HERE, DeLorme, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, © OpenStreetMap contributors, and the GIS User Community Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, and the GIS user

Snipes Athletic Fields

Service Layer Credits: Sources: Esri, HERE, DeLorme, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, © OpenStreetMap contributors, and the GIS User Community

3. AGENCY COMMENTS

Regardless of whether a DEP permit is necessary for this proposed project, any potential impacts to threatened and endangered species and/or special concern species and resources must be resolved with the appropriate jurisdictional agency. In some cases, a permit or authorization from the jurisdictional agency may be needed if adverse impacts to these species and habitats cannot be avoided.

These agency determinations and responses are **valid for two years** (from the date of the review), and are based on the project information that was provided, including the exact project location; the project type, description, and features; and any responses to questions that were generated during this search. If any of the following change: 1) project location, 2) project size or configuration, 3) project type, or 4) responses to the questions that were asked during the online review, the results of this review are not valid, and the review must be searched again via the PNDI Environmental Review Tool and resubmitted to the jurisdictional agencies. The PNDI tool is a primary screening tool, and a desktop review may reveal more or fewer impacts than what is listed on this PNDI receipt. The jurisdictional agencies **strongly advise against** conducting surveys for the species listed on the receipt prior to consultation with the agencies.

PA Game Commission

RESPONSE:

No Impact is anticipated to threatened and endangered species and/or special concern species and resources.

PA Department of Conservation and Natural Resources RESPONSE:

No Impact is anticipated to threatened and endangered species and/or special concern species and resources.

PA Fish and Boat Commission RESPONSE:

Further review of this project is necessary to resolve the potential impact(s). Please send project information to this agency for review (see WHAT TO SEND).

PFBC Species: (Note: The Pennsylvania Conservation Explorer tool is a primary screening tool, and a desktop review may reveal more or fewer species than what is listed below.)

Scientific Name	Common Name	Current Status
Sensitive Species**	150 11027	Endangered

U.S. Fish and Wildlife Service RESPONSE:

No impacts to **federally** listed or proposed species are anticipated. Therefore, no further consultation/coordination under the Endangered Species Act (87 Stat. 884, as amended; 16 U.S.C. 1531 et seq. is required. Because no take of federally listed species is anticipated, none is authorized. This response does not reflect potential Fish and Wildlife Service concerns under the Fish and Wildlife Coordination Act or other authorities.

* Special Concern Species or Resource - Plant or animal species classified as rare, tentatively undetermined or candidate as well as other taxa of conservation concern, significant natural communities, special concern populations (plants or animals) and unique geologic features.

** Sensitive Species - Species identified by the jurisdictional agency as collectible, having economic value, or being susceptible to decline as a result of visitation.

WHAT TO SEND TO JURISDICTIONAL AGENCIES

If project information was requested by one or more of the agencies above, upload* or email* the following information to the agency(s). Instructions for uploading project materials can be found <u>here</u>. This option provides the applicant with the convenience of sending project materials to a single location accessible to all three state agencies. Alternatively, applicants may email or mail their project materials (see AGENCY CONTACT INFORMATION). *Note: U.S.Fish and Wildlife Service requires applicants to mail project materials to the USFWS PA field office (see AGENCY CONTACT INFORMATION). USFWS will not accept project materials submitted electronically (by upload or email).

Check-list of Minimum Materials to be submitted:

<u>x</u> Project narrative with a description of the overall project, the work to be performed, current physical characteristics of the site and acreage to be impacted.

<u>x</u> A map with the project boundary and/or a basic site plan(particularly showing the relationship of the project to the physical features such as wetlands, streams, ponds, rock outcrops, etc.)

In addition to the materials listed above, USFWS REQUIRES the following

x SIGNED copy of a Final Project Environmental Review Receipt

The inclusion of the following information may expedite the review process.

____Color photos keyed to the basic site plan (i.e. showing on the site plan where and in what direction each photo was taken and the date of the photos)

Information about the presence and location of wetlands in the project area, and how this was determined (e.g., by a qualified wetlands biologist), if wetlands are present in the project area, provide project plans showing the location of all project features, as well as wetlands and streams.

4. DEP INFORMATION

The Pa Department of Environmental Protection (DEP) requires that a signed copy of this receipt, along with any required documentation from jurisdictional agencies concerning resolution of potential impacts, be submitted with applications for permits requiring PNDI review. Two review options are available to permit applicants for handling PNDI coordination in conjunction with DEP's permit review process involving either T&E Species or species of special concern. Under sequential review, the permit applicant performs a PNDI screening and completes all coordination with the appropriate jurisdictional agencies prior to submitting the permit application. The applicant will include with its application, both a PNDI receipt and/or a clearance letter from the jurisdictional agency if the PNDI Receipt shows a Potential Impact to a species or the applicant chooses to obtain letters directly from the jurisdictional agencies. Under concurrent review, DEP, where feasible, will allow technical review of the permit to occur concurrently with the T&E species consultation with the jurisdictional agency. The applicant must still supply a copy of the PNDI Receipt with its permit application. The PNDI Receipt should also be submitted to the appropriate agency according to directions on the PNDI Receipt. The applicant and the jurisdictional agency will work together to resolve the potential impact(s). See the DEP PNDI policy at https://conservationexplorer.dcnr.pa.gov/content/resources.

5. ADDITIONAL INFORMATION

The PNDI environmental review website is a preliminary screening tool. There are often delays in updating species status classifications. Because the proposed status represents the best available information regarding the conservation status of the species, state jurisdictional agency staff give the proposed statuses at least the same consideration as the current legal status. If surveys or further information reveal that a threatened and endangered and/or special concern species and resources exist in your project area, contact the appropriate jurisdictional agency/agencies immediately to identify and resolve any impacts.

For a list of species known to occur in the county where your project is located, please see the species lists by county found on the PA Natural Heritage Program (PNHP) home page (<u>www.naturalheritage.state.pa.us</u>). Also note that the PNDI Environmental Review Tool only contains information about species occurrences that have actually been reported to the PNHP.

6. AGENCY CONTACT INFORMATION

PA Department of Conservation and Natural Resources

Bureau of Forestry, Ecological Services Section 400 Market Street, PO Box 8552 Harrisburg, PA 17105-8552 Email: <u>RA-HeritageReview@pa.gov</u> Fax:(717) 772-0271

PA Fish and Boat Commission Division of Environmental Services 450 Robinson Lane, Bellefonte, PA 16823 Email: <u>RA-FBPACENOTIFY@pa.gov</u>

U.S. Fish and Wildlife Service

Pennsylvania Field Office Endangered Species Section 110 Radnor Rd; Suite 101 State College, PA 16801 NO Faxes Please

PA Game Commission

Bureau of Wildlife Habitat Management Division of Environmental Planning and Habitat Protection 2001 Elmerton Avenue, Harrisburg, PA 17110-9797 Email: <u>RA-PGC_PNDI@pa.gov</u> NO Faxes Please

7. PROJECT CONTACT INFORMATION

Name: Maryellen Saylor, P.E.	Mannet					
Company/Business Name: Boucher & James, Inc.						
Address: 1456 Ferry Road, Building 500,						
City, State, Zip: Doylestown, PA 18901						
Phone:(215) 345-9400 ext. 118	Fax:(<u>215</u>) <u>345-9401</u>					
Email: msaylor@bjengineers.com						

8. CERTIFICATION

I certify that ALL of the project information contained in this receipt (including project location, project size/configuration, project type, answers to questions) is true, accurate and complete. In addition, if the project type, location, size or configuration changes, or if the answers to any questions that were asked during this online review change, I agree to re-do the online environmental review.

applicant/project proponent signature

date

Pennsylvania Fish & Boat Commission

Division of Environmental Services Natural Diversity Section 450 Robinson Lane Bellefonte, PA 16823 814-359-5237

November 22, 2016

IN REPLY REFER TO SIR# 46851

Boucher & James, Inc. Kim Mcleod 1456 Ferry Road Quakertown, Pennsylvania 18951

RE: Species Impact Review (SIR) – Rare, Candidate, Threatened and Endangered Species PNDI Search No. 614582_2 Snipes Athletic Fields BUCKS County: Lower Makefield Township

Dear Kim Mcleod:

This responds to your inquiry about a Pennsylvania Natural Diversity Inventory (PNDI) Internet Database search "potential conflict" or a threatened and endangered species impact review. These projects are screened for potential conflicts with rare, candidate, threatened or endangered species under Pennsylvania Fish & Boat Commission jurisdiction (fish, reptiles, amphibians, aquatic invertebrates only) using the Pennsylvania Natural Diversity Inventory (PNDI) database and our own files. These species of special concern are listed under the Endangered Species Act of 1973, the Wild Resource Conservation Act, and the Pennsylvania Fish & Boat Code (Chapter 75), or the Wildlife Code.

An element occurrence of a rare, candidate, threatened, or endangered species under our jurisdiction is known from the vicinity of the proposed project. However, given the nature of the proposed project, the immediate location, or the current status of the nearby element occurrence(s), no adverse impacts are expected to the species of special concern.

This response represents the most up-to-date summary of the PNDI data and our files and is valid for two (2) years from the date of this letter. An absence of recorded species information does not necessarily imply species absence. Our data files and the PNDI system are continuously being updated with species occurrence information. Should project plans change or additional information on listed or proposed species become available, this determination may be reconsidered, and consultation shall be reinitiated.

Our Mission:

www.fish.state.pa.us

To protect, conserve and enhance the Commonwealth's aquatic resources and provide fishing and boating opportunities.

If you have any questions regarding this review, please contact Kathy Gipe at 814-359-5186 and refer to the SIR # 46851. Thank you for your cooperation and attention to this important matter of species conservation and habitat protection.

Sincerely,

Chintophen Cl. Culum

Christopher A. Urban, Chief Natural Diversity Section

CAU/KDG/dn

Boucher & James, Inc.

Fountainville Professional Building 1456 Ferry Road, Building 500 Doylestown, PA 18901 215-345-9400 Fax 215-345-9401

2738 Rimrock Drive Stroudsburg, PA 18360 570-629-0300 Fax 570-629-0306

559 Main Street, Suite 230 Bethlehem, PA 18018 610-419-9407 Fax 610-419-9408

www.bjengineers.com

February 1, 2017

NOVATIVE ENGINEERING

AN EMPLOYEE OWNED COMPANY

Ms. Rene Moyer, Permits Coordinator Bucks County Conservation District 1456 Ferry Road, Bldg. 704 Doylestown, PA 18901

SUBJECT: ACT 167 PLAN CONSISTENCY PERMIT APPLICATION NOTICE OF INTENT FOR COVERAGE UNDER THE GENERAL (PAG-02) NPDES PERMIT SNIPES TRACT ATHLETIC FIELDS PRELIMINARY / FINAL LAND DEVELOPMENT PLAN LOWER MAKEFIELD TOWNSHIP TAX MAP PARCEL NO'S 20-016-001 & 20-016-002 PROJECT NO. 16-77-054L

Dear Rene:

The Post Construction Stormwater Management Plan for the above referenced project is consistent with the Lower Makefield Township Act 167 Plan (Chapter 173 Stormwater Management - Delaware River South Watershed, Ordinance No. 389).

If you have any questions, please do not hesitate to contact me.

Sincerely,

Mark W. Eisold, P.E. Township Engineer

MWE/MESkam

CC: Terry Fedorchak, Township Manager Steve Ware, Planning & Zoning Administrator

P:\2016\1677054\1677054L\Documents\NPDES Application\2017-02-01 Act 167 Consistency Letter .doc

APPENDIX A

Land Use Information Questions

Responses to the following questions are required to determine applicability of DEP's Land Use Policy for Permitting of Infrastructure and Facilities.

Note: Applicants are encouraged to submit copies of local zoning approvals with their authorization application.

	LAND USE INFORMATION									
1.	Is there an adopted county or multi-county comprehensive plan?	Yes 🗴	No 🗌							
2.	Is there an adopted municipal or multi-municipal comprehensive plan?	Yes 🗴	No 🗌							
3.	Is there an adopted county-wide zoning ordinance, municipal zoning ordinance or joint municipal zoning ordinance?	Yes 🛛	No 🗌							
<u>appli</u>	e applicant answers NO to either Question 1, 2, <u>or</u> 3, <u>the provisions of the PA MPC are</u> <u>cant does not need to respond to questions 4 and 5 below</u> . applicant answers YES to questions 1, 2 <u>and</u> 3, the applicant should respond to questions 4 a									
4.	Does the proposed project meet the provisions of the zoning ordinance or does the proposed project have zoning approval?	Yes 🗴	No 🗌							
	If zoning approval has been received, attach documentation.									
5.	Have you attached Municipal and County Land Use Letters for the project?	Yes 🛛	No 🗌							

AN EMPLOYEE OWNED COMPANY NOVATIVE ENGINEERIN

February 1, 2017

Mr. Steve Ware, Planning & Zoning Administrator Lower Makefield Township 1100 Edgewood Road Yardley, PA 19067

SUBJECT: ACT 67, 68 AND 127 NOTIFICATION **SNIPES TRACT ATHLETIC FIELDS OUARRY ROAD AND DOLINGTON ROAD** LOWER MAKEFIELD TOWNSHIP TAX MAP PARCEL NO. 20-016-001-001 & 20-016-002 **PROJECT NO. 16-77-054L**

Dear Steve:

We are in receipt of the Acts 14, 67, 68 and 127 notification letter, dated January 6, 2017, and the attached Appendix C Municipal Land Use Letter form (PADEP NPDES Permit application) for the above referenced project. The Lower Makefield Township Zoning Ordinance is generally consistent with the Municipal Comprehensive Plan and the County Comprehensive Plan. The project meets the provisions of the Lower Makefield Township Zoning Ordinance. We have completed the form on behalf of the Township and have enclosed it with this letter.

Boucher & James, Inc.

If you have any questions, please do not hesitate to contact me.

Sincerely,

MW.

Mark W. Eisold, P.E. **Township Engineer**

MWE/MES/kam

CC: Terry Fedorchak, Township Manager Lower Makefield Township Board of Supervisors David Truelove, Esq., Township Solicitor

P:2016\1677054\1677054L\Documents\NPDES Application\Notification Letters\2017-02-01 Confurnation of Notification Letter .doc

Fountainville Professional Building 1456 Ferry Road, Building 500 Dovlestown, PA 18901 215-345-9400 Fax 215-345-9401

2738 Rimrock Drive Stroudsburg, PA 18360 570-629-0300 Fax 570-629-0306

559 Main Street, Suite 230 Bethlehem, PA 18018 610-419-9407 Fax 610-419-9408

www.bjengineers.com

3150-PM-BWEW0035 Rev. 8/2016 Checklist

APPENDIX C SAMPLE MUNICIPAL LAND USE LETTER

Date: January 30, 2017

To: Te<u>rry Fedorchak, Township Manage</u>r(Name of Applicant)

- Re: Lower Makefield Township Snipes Athletic Fields (Name of DEP Permittee)
- The municipality of <u>Lower Makefield</u> states that it:

X has adopted a municipal or multi-municipal comprehensive plan. If yes, please provide date of adoption: October 20, 2003

has not adopted a municipal or multi-municipal comprehensive plan.

The municipality of <u>Lower Makefield</u> states that it:

X has adopted a county zoning ordinance, or a municipal or joint-municipal zoning ordinance.

has not adopted a county zoning ordinance, or a municipal or joint-municipal zoning ordinance.

If applicable:

The municipality of <u>Lower Makefield</u> states that its zoning ordinance is generally consistent with its municipal comprehensive plan and the county comprehensive plan.

The above referenced proposed project

meets the provisions of the local zoning ordinance

If zoning approval is required for the project to proceed, the above referenced project:

____ has received zoning approval.

has not received zoning approval.

If the proposed project has not received zoning approval:

What is the status of the zoning request for the proposed project? (e.g., Special Exception Approval from the Zoning Hearing Board required, Conditional Use approval from the Governing Body required)

Zoning Variances were granted to the Township by the Lower Makefield Township Zoning Hearing Board at their

November 15, 2016 public Meeting.

3150-PM-BWEW0035 Rev. 8/2016 Checklist

Is there a legal challenge by the applicant with regard to zoning for the proposed project?

Name and Contact Information for Municipal Zoning Officer:

Additional Comments (attach additional sheets if necessary):

Submitted By:	
Name	Mark W. Eisold, P.E.
Title	Township Engineer
Contact Information (Address & Phone)	Boucher & James, Fl. (215)345-9400 1456 Ferry Road, Bla 500, Daylestown, PA 18901
Signature	mul W. E.C.
Date	2-1-17

Boucher & James, Inc.

Fountainville Professional Building 1456 Ferry Road, Building 500 Doylestown, PA 18901 215-345-9400 Fax 215-345-9401

2738 Rimrock Drive Stroudsburg, PA 18360 570-629-0300 Fax 570-629-0306

559 Main Street, Suite 230 Bethlehem, PA 18018 610-419-9407 Fax 610-419-9408

www.bjengineers.com

January 31, 2017

NOVATIVE ENGINEERING

AN EMPLOYEE OWNED COMPANY

N

COUNTY LAND USE LETTER Bethlehem, P/ CERTIFIED MAIL NO. 7015 1730 0002 1259 3750 610-419-9407

Ms. Lynn T. Bush Executive Director Bucks County Planning Commission 1260 Almshouse Road Doylestown, PA 18901

Dear Ms. Bush:

Acts 14, 67, 68 and 127, which amended the Municipalities Planning Code, direct state agencies to consider comprehensive plans and zoning ordinances when reviewing applications for permitting of facilities and infrastructure, and specify that state agencies may rely upon comprehensive plans and zoning ordinances under certain conditions as described in Sections 619.2 and 1105 of the Municipalities Planning Code. The Pennsylvania Department of Environmental Protection's Policy for Consideration of Local Comprehensive Plans and Zoning Ordinances in DEP Review of Permits for Facilities and Infrastructure (DEP's Land Use Policy) provides direction and guidance to DEP staff, permit applicants, and local and county governments for the implementation of Acts 67, 68 and 127 of 2000. This policy can be found at <u>www.dep.pa.gov</u>; keyword: Land Use.

In accordance with DEP's Land Use Policy, enclosed please find a County Land Use Letter that is to be submitted with our permit application to DEP for an NPDES Permit for Stormwater Discharges Associated with Construction Activities. Please complete the attached form and return within 30 days to:

Name of Applicant: Lower Makefield Township

Address of Applicant: 1100 Edgewood Road, Yardley, PA 19067

Project Location: <u>Quarry Road and Dolington Road</u>, Lower Makefield Township, Bucks Co.. <u>PA (Northwest and adjacent to the Intersection)</u>

<u>Project Description</u>: Lower Makefield Township proposes the construction of a municipal athletic field complex, which will include one entrance drive each from Dolington Road and Quarry Road, an internal loop road with parking areas, one small and three large athletic fields, a pavilion, a concession stand with restrooms, a future skatepark, a walking and biking trail system, and stormwater management/ infiltration facilities on the site. The site is proposed to be served by public water and sewer service. The disturbance of trees will be minimized with the proposed project design. The property is zoned R-1 Residential Low-Density and a Public Recreational Facility is a permitted use within this zoning district.

Ms. Lynn T. Bush **Bucks County Planning Commission** January 31, 2017 Page 2 of 2

Please do not send this form to DEP, as we must include the County Land Use Letter with our permit application. If we do not receive a response from you within 30 days, we shall proceed to submit our permit application to DEP without the County Land Use Letter. If the County Land Use Letter is not submitted with our permit application, and we provide proof to DEP that we attempted to obtain it, DEP will assume there are no substantive land use conflicts and proceed with the normal application review process.

If you have any questions, please do not hesitate to contact me at (215) 345-9400.

Sincerely,

Maryellen Saylar Maryellen Saylar

Project Engineer

MES/kam

Attachment - County Land Use Letter

cc: **Bucks County Commissioners**

P:\2016\1677054\1677054L\Documents\NPDES Application\Notification Letters\2017-01-30 County Notification Letter (003).doc

3150-PM-BWEW0035 Rev. 8/2016 Checklist

APPENDIX B SAMPLE COUNTY LAND USE LETTER

Date:
To: Terry Fedorchak, Township Manager(Name of Applicant)
From:Bucks County Planning Agency/Commission
Re: Lower Makefield Township Snipes Tract Athletic Field Name of DEP Permittee)
The County ofBucksstates that it:
has adopted a county or multi-county comprehensive plan. If yes, please provide date of adoption: December 21, 2011
has not adopted a county or multi-county comprehensive plan.
If applicable:
The above referenced project:
is consistent with the adopted county or multi-county comprehensive plan. is not consistent with the adopted county or multi-county comprehensive plan.
Additional Comments (attach additional sheets if necessary):
Submitted By:
Name
Title
Contact Information (Address & Phone)
Signature
Date

Boucher & James, Inc.

Fountainville Professional Building 1456 Ferry Road, Building 500 Doylestown, PA 18901 215-345-9400 Fax 215-345-9401

2738 Rimrock Drive Stroudsburg, PA 18360 570-629-0300 Fax 570-629-0306

January 31, 2017

OVATIVE ENGINEERING

AN EMPLOYEE OWNED COMPANY

MUNICIPAL LAND USE LETTER 559 Main Street, Suite 230 CERTIFIED MAIL NO. 7015 1730 0002 1259 3743 Bethlehem, PA 18018

610-419-9407 Fax 610-419-9408

www.bjengineers.com

Mr. Steve Ware Planning & Zoning Administrator Lower Makefield Township 1100 Edgewood Road Yardley, PA 19067-1696

Dear Steve:

Acts 14, 67, 68 and 127, which amended the Municipalities Planning Code, direct state agencies to consider comprehensive plans and zoning ordinances when reviewing applications for permitting of facilities and infrastructure, and specify that state agencies may rely upon comprehensive plans and zoning ordinances under certain conditions as described in Sections 619.2 and 1105 of the Municipalities Planning Code. The Pennsylvania Department of Environmental Protection's Policy for Consideration of Local Comprehensive Plans and Zoning Ordinances in DEP Review of Permits for Facilities and Infrastructure (DEP's Land Use Policy) provides direction and guidance to DEP staff, permit applicants, and local and county governments for the implementation of Acts 67, 68 and 127 of 2000. This policy can be found at <u>www.dep.pa.gov</u>, keyword: Land Use.

In accordance with DEP's Land Use Policy, enclosed please find a Municipal Land Use Letter that is to be submitted with our permit application to DEP for an NPDES Permit for Stormwater Discharges Associated with Construction Activities. Please complete the attached form and return within 30 days to:

Name of Applicant: Lower Makefield Township

Address of Applicant: 1100 Edgewood Road, Yardley, PA 19067

Project Location: <u>Quarry Road and Dolington Road</u>, Lower Makefield Township, Bucks Co., PA (Northwest and adjacent to the Intersection)

<u>Project Description</u>: Lower Makefield Township proposes the construction of a municipal athletic field complex, which will include one entrance drive each from Dolington Road and Quarry Road, an internal loop road with parking areas, one small and three large athletic fields, a pavilion, a concession stand with restrooms, a future skatepark, a walking and biking trail system, and stormwater management/ infiltration facilities on the site. The site is proposed to be served by public water and sewer service. The disturbance of trees will be minimized with the proposed project design. The property is zoned R-1 Residential Low-Density and a Public Recreational Facility is a permitted use within this zoning district.

Steve Ware Lower Makefield Township January 31, 2017 Page 2 of 2

Please do not send this form to DEP, as we must include the Municipal Land Use Letter with our permit application. If we do not receive a response from you within 30 days, we shall proceed to submit our permit application to DEP without the Municipal Land Use Letter. If the Municipal Land Use Letter is not submitted with our permit application, and we provide proof to DEP that we attempted to obtain it, DEP will assume there are no substantive land use conflicts and proceed with the normal application review process.

If you have any questions, please do not hesitate to contact me at (215) 345-9400.

Sincerely,

Maryellen Saylor Maryellen Saylor, P.E.

Project Engineer

MES/kam

Attachment – Municipal Land Use Letter

Jeffrey Benedetto, Chairman of the Board cc:

P:\2016\1677054\1677054L\Documents\NPDES Application\Notification Letters\2017-01-31 Township Notification Letter (003).doc

3150-PM-BWEW0035 Rev. 8/2016 Checklist

APPENDIX C SAMPLE MUNICIPAL LAND USE LETTER

Date: January 30, 2017

To: Terry Fedorchak, Township Manager(Name of Applicant)

From: Lower Makefield Township/Bacoxa /XXXX

Re: Lower Makefield Township Snipes Athletic Fields (Name of DEP Permittee)

The municipality of <u>Lower Makefield</u> states that it:

X has adopted a municipal or multi-municipal comprehensive plan. If yes, please provide date of adoption: October 20, 2003

has not adopted a municipal or multi-municipal comprehensive plan.

The municipality of Lower Makefield states that it:

X has adopted a county zoning ordinance, or a municipal or joint-municipal zoning ordinance.

has not adopted a county zoning ordinance, or a municipal or joint-municipal zoning ordinance.

If applicable:

The municipality of <u>Lower Makefield</u> states that its zoning ordinance is generally consistent with its municipal comprehensive plan and the county comprehensive plan.

The above referenced proposed project

meets the provisions of the local zoning ordinance

If zoning approval is required for the project to proceed, the above referenced project:

x has received zoning approval.

has not received zoning approval.

If the proposed project has not received zoning approval:

What is the status of the zoning request for the proposed project? (e.g., Special Exception Approval from the Zoning Hearing Board required, Conditional Use approval from the Governing Body required)

Zoning Variances were granted to the Township by the Lower Makefield Township Zoning Hearing Board at their November 15, 2016 public Meeting.

- 13 -

3150-PM-BWEW0035 Rev. 8/2016 Checklist

Is there a legal challenge by the applicant with regard to zoning for the proposed project?

Name and Contact Information for Municipal Zoning Officer:

Additional Comments (attach additional sheets if necessary):

Submitted By:	
Name	Mark W. Eisold, P.E.
Title	Township Engineer
Contact Information (Address & Phone)	Boucher& James, FUL. (215)345-9400 1456 Ferry Road, Bldg 500, Doylestown, PA 18901
Signature	
Date	

.

APPENDIX H:

PCSM COMPLETENESS REVIEW CHECKLIST

3150-PM-BWEW0035 Rev. 8/2016 Checklist

Item Location:

D = PCSM Drawings, N = PCSM Narrative, D or N = Drawings or Narrative D & N = Drawings and Narrative

			Genera	I PCSM planning and design 102.8(b)	
			Ochicit	PCSM Plan - General	
aqA	licant	Revi	ewer		
Included	Page Number	С	NC	Item	Item Location
X	D 11 of 14 PCSM N 4			The PCSM Plan is separate from the E&S Plan and labeled "PCSM" or "Post Construction Stormwater Management Plan" and is the final plan for construction.	D & N
x	PCSM N G-11			Municipal or county engineer consistency letter provided	Ν
х	PCSM N 6			Act 167 plan is dated January 2005 or later	Ν
	PCSM N G-1			Documentation provided that PCSM Plan was prepared by person trained and experienced in PCSM design methods and techniques applicable to the size and scope of the project	N
X	PCSM N 4			Preserve the integrity of stream channels and maintain and protect the physical, biological and chemical qualities of the receiving stream	D or N
Х	PCSM N 4			Prevent an increase in the rate of stormwater runoff	D or N
x	PCSM N 4			Minimize any increase in stormwater runoff volume	D or N
X	D 11 of 14 PCSM N 4			Minimize impervious areas	D & N
	D 11 of 14 PCSM N 4			Maximize the protection of existing drainage features and existing vegetation	D & N
X	D 11 of 14 PCSM N 4			Minimize land clearing and grading	D & N
X	D 11 of 14			Minimize soil compaction	D or N
	D 11,12 of 14 PCSM N 4			Utilize other structural or nonstructural BMPs that prevent or minimize changes in stormwater runoff	D & N
Ex	isting topog	raphic fea	atures of	the project site and the immediate surrounding area §102.8(f)	(1)
Арр	licant	Revi	ewer		
Included	Page Number	С	NC	Item	Item Location
x	D 11 of 14			Topographic map(s) of the project site provided	D
X	D 11 of 14			Location map (USGS quadrangle) provided	D
	D 11 of 14			Type of cover	D
Т	ypes, depth	, slope, lo	cations a	nd limitations of the soils and geologic formations §102.8(f)	2)
Арр	licant	Revi	ewer		
	Page				Item
Included	Number	<u>с</u>	NC	Item	Location
	D 11 of 14 D 11 of 14			Soil map provided	D
	D 11 Of 14			Soil use limitations and their resolutions provided	D or N
	D 11 of 14 PCSM N E-1 to E-21			Site characterization of soil and geology, including appropriate infiltration and geological studies that identify location, depths, and methodology	D & N
X	PCSM N E-3			Geologic mapping features addressed where appropriate	D or N

App	licant	Revi	ewer		
Included	Page Number	С	NC	Item	Item Location
X	D 11 of 14			Permit boundaries	D
X	D 11 of 14			Proposed limits of disturbance	D
X	D 11 of 14			Proposed contours and grades	D
X	D 11 of 14			Proposed improvements (i.e. roads, buildings, utilities etc.)	D
Х	PCSM N 3&4			Past, present and proposed land uses	Ν
X	D 11 of 14			Proposed waterways and stormwater management facilities shown on the plan maps	D
Х	D 11 of 14			Proposed impervious areas minimized & shown on plan map(s)	D
		Net	change in	n volume and rate of stormwater §102.8(f)(4)	
Арр	licant	Revi	ewer		
Included	Page Number	С	NC	Item	Item Locatior
х	PCSM N F-4			Design storm used for calculations identified *Worksheet 4	Ν
X	PCSM N F-4			Pre- and post-construction hydrology runoff rate and volume are identified for the each drainage area of entire project site *Worksheet 4	Ν
\mathbf{X}	PCSM N F-4			The net change in runoff rate and volume are identified for each drainage area of the entire project site *Worksheet 4	Ν
X	PCSM N B-2 C-2 & F-4			Summary table in NOI consistent with runoff calculations, when applicants have utilized the manual to meet design standards	Ν
X	N/A			Documentation summarizing the PCSM requirements (rate, volume, and water quality) for a DEP approved Act 167 plan, if applicable	Ν
X	N/A			Documentation summarizing the alternative approach's design criteria for rate, volume and water quality, if applicable	Ν
			Red	ceiving surface waters §102.8(f)(5)	
Арр	licant	Revi	ewer		
Included	Page Number	С	NC	Item	Item Locatio
X	D 11 of 14			Existing streams, wetlands, floodways, and watercourses shown on plan map(s)	D
X	D 11 of 14			Existing and designated uses identified	D or N
X	N/A			Boundaries for HQ or EV watersheds shown on plan map(s)	D
				Wetland boundaries consistent with delineation report	D
x	N/A				-
			Vritten De	escription of the PCSM BMPs §102.8(f)(6)	_
x			Vritten De ewer	· · · · · ·	-
App	N/A			· · · · · ·	ltem
App	N/A licant Page	Revi	ewer	escription of the PCSM BMPs §102.8(f)(6)	ltem
App	N/A licant Page Number D 11,12 of 14	Revi C	ewer NC	All permanent PCSM BMPs identified in the narrative and shown on	Item Location
App Included	N/A licant Page Number D 11,12 of 14 PCSM N 5	Revi C	ewer NC	All permanent PCSM BMPs identified in the narrative and shown on plan drawings	Item Location D & N
App Included	N/A licant Page Number D 11,12 of 14 PCSM N 5 D 12 of 14	Revi	ewer NC	Item All permanent PCSM BMPs identified in the narrative and shown on plan drawings Specifications for all permanent PCSM BMPs provided Proprietary BMP systems are illustrated on the drawings in	Item Location D & N D
App Included	N/A licant Page Number D 11,12 of 14 PCSM N 5 D 12 of 14	Revi	ewer NC	Item Item All permanent PCSM BMPs identified in the narrative and shown on plan drawings Specifications for all permanent PCSM BMPs provided Proprietary BMP systems are illustrated on the drawings in accordance with their manufacturer's requirements	Item Location D & N D
App Included X X App	N/A licant Page Number D 11,12 of 14 PCSM N 5 D 12 of 14 D 12 of 14	Revi	ewer NC	Item All permanent PCSM BMPs §102.8(f)(6) Item All permanent PCSM BMPs identified in the narrative and shown on plan drawings Specifications for all permanent PCSM BMPs provided Proprietary BMP systems are illustrated on the drawings in accordance with their manufacturer's requirements M BMP implementation or installation §102.8(f)(7) Item	Item Location D & N D D Item
App Included X App Included X	N/A licant Page Number D 11,12 of 14 PCSM N 5 D 12 of 14 D 12 of 14 Itant Page	Revi	ewer NC	Item Item All permanent PCSM BMPs identified in the narrative and shown on plan drawings Specifications for all permanent PCSM BMPs provided Proprietary BMP systems are illustrated on the drawings in accordance with their manufacturer's requirements M BMP implementation or installation §102.8(f)(7) Item Complete and site specific sequence of BMP installations provided	Item Location D & N D D Item
App Included X X App Included X X	N/A licant Page Number D 11,12 of 14 PCSM N 5 D 12 of 14 D 12 of 14 Itant Page Number	Revi	ewer NC C ewer NC NC	Item All permanent PCSM BMPs §102.8(f)(6) Item All permanent PCSM BMPs identified in the narrative and shown on plan drawings Specifications for all permanent PCSM BMPs provided Proprietary BMP systems are illustrated on the drawings in accordance with their manufacturer's requirements M BMP implementation or installation §102.8(f)(7) Item	Item Location D & N D D Item Location
App Included X X App Included X X X	N/A licant Page Number D 11,12 of 14 PCSM N 5 D 12 of 14 D 12 of 14 Iicant Page Number D 11 of 14	Revi	ewer NC C C C C C C C C C C C C C C C C C C	Item All permanent PCSM BMPs identified in the narrative and shown on plan drawings Specifications for all permanent PCSM BMPs provided Proprietary BMP systems are illustrated on the drawings in accordance with their manufacturer's requirements M BMP implementation or installation §102.8(f)(7) Item Complete and site specific sequence of BMP installations provided Construction sequence addresses all structural BMPs Sequence for individual BMP installation	Item Location D & N D D D Item Location D D
App Included X App App Included X X	N/A licant Page Number D 11,12 of 14 PCSM N 5 D 12 of 14 D 12 of 14 D 12 of 14 Iicant Page Number D 11 of 14 D 11 of 14	Revi	ewer	Item All permanent PCSM BMPs identified in the narrative and shown on plan drawings Specifications for all permanent PCSM BMPs provided Proprietary BMP systems are illustrated on the drawings in accordance with their manufacturer's requirements M BMP implementation or installation §102.8(f)(7) Item Complete and site specific sequence of BMP installations provided Construction sequence addresses all structural BMPs	Item Location D & N D D D Item Location D D

			Su	pporting calculations §102.8(f)(8)	
Арр	licant	Revi	ewer	*Worksheets 1-5 and 10 and Predev and Post Dev Hydrographs	
Included	Page Number	с	NC	and Routing Calculations Item	Item Location
X	PCSM N F-1			Worksheets from the Stormwater BMP Manual provided when applicants have utilized the manual to meet design standards	Ν
X	PCSM N B-2, C-2, F-4			Figures contained on worksheets consistent with those in NOI/application when applicants have utilized the manual to meet design standards	N
X	PCSM N C-1, D-1, F-1 to 11			Calculations for all permanent BMPs and points of interest provided	Ν
	PCSM N 6 B-1 to B-32 C-1 to C-48, F-1 to 6			Methodology used for all calculations is identified. Calculations demonstrating that rate, volume, and water quality were met in accordance with 102.8(g)(2)(i-iii) and 102.8(g)(3)(i-ii) AND/OR a DEP approved Act 167 plan OR an alternative approach	N
X	PCSM N C-1 to C-48			Routing analysis to demonstrate peak control for the 2-, 10-, 50-, and 100-year/24-hour storm events, which considers benefits of proposed BMPs provided	Ν
				Plan drawings §102.8(f)(9)	
Арр	licant	Revi	ewer		
Included	Page Number	с	NC	Item	Item Location
X	D 11 OF 14			Locations of all proposed BMPs shown along with tributary drainage areas	D
X	D 11 OF 14			Existing and proposed discharges & points of interest shown	D
X	D 11 OF 14			PCSM Plan drawings consistent with E&S Plan in relation to proposed contours, improvements, soils, wetlands, floodways, streams, discharge locations, etc.	D
Х	D 12 OF 14			Construction details provided for all PCSM BMPs	D
	D 11&12 OF 14 PCSM N C-1 to 48			Dimensions and elevations consistent with those used in supporting calculations	D & N
		Long-	term oper	ation and maintenance schedule §102.8(f)(10)	
Арр	licant	Revi	ewer		
Included	Page Number	с	NC	Item	Item Location
X	D 12 OF 14			Inspection schedule of each permanent BMP is provided	D
	D 12 OF 14			Directions for maintenance and/or replacement of each BMP provided	D
	Į		Recyclin	g or disposal of materials §102.8(f)(11)	
Арр	licant	Revi			
Included	Page Number	с	NC	Item	Item Location
X	D 12 OF 14			Project wastes identified	D
X	D 12 OF 14			Directions for recycling /disposal of wastes provided	D
				ormations or soil conditions §102.8(f)(12)	
Арр	licant	Revi	ewer		lte
Included	Page Number	с	NC	Item	Item Location
	PCSM N 4 PCSM E-3			Potential for geologic or soil conditions to cause pollution during construction identified	N
	D 12 OF 14			Instructions for proper handling and/or disposal of all materials which could cause pollution are provided	D
	D 12 OF 14			Typical details & instructions provided for proper handling and/or disposal of all such materials	D
Х	D 12 OF 14			Locations of all such materials clearly shown on plan maps	D

Potential thermal impacts §102.8(f)(13)					
Арр	Applicant Reviewer		ewer		
Included	Page Number	С	NC	Item	Item Location
X	PCSM N 4			Description provided of how thermal impacts of stormwater runoff from project site were avoided, minimized, or mitigated	N
		Ri	iparian fo	rest buffer management plan §102.8(f)(14)	
Арр	licant	Revi	ewer		
Included	Page Number	с	NC	Item	Item Location
	N/A			Existing and/or proposed riparian forest buffers shown on plan map(s)	D
	N/A			Impairment and TMDL status of the receiving water(s) for the project indicated	N
	N/A			Riparian buffer offset areas shown, if necessary	D & N
	N/A			Riparian buffer or riparian forest buffer equivalency demonstration included, if necessary	D & N
	N/A			Checklist for functional equivalency of riparian buffers and riparian buffers included	Ν

COMPLETENESS ITEMS BY PERMIT TYPE

Check-off: C = Complete, NC = Not Complete

Item Location: D = E&S/PCSM Drawings, N = E&S/PCSM Narrative, D or N = Drawings or Narrative D & N = Drawings and Narrative

	CHECKLIST FOR <u>NEW</u> NPDES PERMITS							
Арр	licant							
	Page				Item			
Included	Number	С	NC	Item	Location			
LÄI	Checklist 1-8 E&S N G-1			1. All items included in the standard E&S and PCSM completeness review checklist	N			

CHECKLIST FOR NPDES PERMIT RENEWALS						
Арр	Applicant Reviewer		ewer			
	Page			N/A	ltem	
Included	Number	С	NC	Item	Location	
				 If no changes have been made to the approved E & S and PCSM plan, the applicant does not need to submit these plans and letters again. However, if changes have been made to the plans, the revised plans must be resubmitted for approval and all letters must be reapplied for and included. 		

	CHECKLIST FOR PHASED NPDES PERMIT							
Арр	Applicant Reviewer							
	Page			N/A	Item			
Included	Number	С	NC	Item	Location			
				1. All items included in new NPDES permit application				
				2. Anticipated project plan for entire project				
				3. Estimated time frame for phases				

	CHECKLIST FOR NPDES PERMIT MAJOR AMENDMENT							
App	licant	Revi	ewer					
	Page		N/A					
Included	Number	С	NC	Item	Location			
				1. All items included in new NPDES permit application.				

MAJOR SOIL PROPERTIES AND ESTIMATED DEGREE OF LIMITATION

MAP	001	HYDROLOGIC	DEPTH TO		SOILS FEATURES THAT AFFECT:
SYMBOL	SOIL	SOIL GROUP	HWT (FT)	BEDROCK (IN)	SHALLOW EXCAVATIONS
AbB	ABBOTTSTOWN SILT LOAM - 3-8% SLOPES	D	0.5'–1.5'	40"-60"	VERY LIMITED DEPTH TO SATURATED ZONE
FoB	FOUNTAINVILLE SILT LOAM - 3-8% SLOPES	с	1.5'–2.5'	40"-60"	VERY LIMITED DEPTH TO SATURATED ZONE LIMITED DEPTH TO BEDROCK
PnB	PENN-LANSDALE COMPLEX - 3-8% SLOPES	В	>6.5'	20"—40"	NOT LIMITED

NOTES

Inc. shall be notified of any discrepancies with the information shown on drawings. Only those plans incorporating the raised or red ink professional seal shall be considered official and relied upon. All ideas, designs and arrangements presented hereon were developed for use on, and in connection with, the specified project being prepared for the Owner. These plans may not be reproduced or altered without the expressed written permission of Boucher & James, Inc. Information shown on this plan represents professional services expressing ideas and designs developed, owned and copyrighted by Boucher & James, Inc. Reproduction of this plan without written approval of Boucher & James, Inc. not permitted. Unauthorized reproduction of a copy of this plan for any purpose will be considered a violation of the plan will be considered a violation of the plan will be prosecuted to the fullest extent of current statutes.

REVISIONS	5:			
DATE	DESCRIPTION	DATE	DESCRIPTION	SNIPES TRACT ATHLETIC FIELDS
01/31/17	PLANS UPDATED WITH INFILTRATION PIT LOCATIONS AND NPDES NOTES			LOWER MAKEFIELD TOWNSHIP
05/02/17	PER ENGINEER REVIEW LETTER			BUCKS COUNTY, PENNSYLVANIA
05/16/17	PER ENGINEER & EAC REVIEW LETTERS			
05/19/17	REVISED INFILTRATION TRENCH INLET 2 TO 3			
06/07/17	REVISED PER CONDITIONS OF APPROVAL			LOWER MAKEFIELD TOWNSHIP
06/30/17	REVISED PER PRE-BID MEETING			1100 EDGEWOOD ROAD
	REVISED PER ADDENDUM 2			
10/20/17	REVISED EXISTING AND PROPOSED WATER LINE			YARDLEY, PA 19067

					1677054L	FRE-DEVELOFMENT DRA
	0 30) 60	120	180	drawn by: TMW	Boucher & James, Inc.
					CHECKED BY: MES	CONSULTING ENGINEERS DOYLESTOWN 🕀 STROUDSBURG 🕀 LEHIGH VALLEY
		SCALE	: 1"= 60'		SCALE: 1" = 60' PLAN STATUS:	CORPORATE HEADQUARTERS: 1456 FERRY RD, BUILDING 500, DOYLESTOWN, VOICE: (215) 345-9400 FAX: (215) 345-9401 PROJECT NAME :
	1				PRELIMINARY	SNIPES TRACT ATHLETIC

- AND MAINTAIN B.M.P. MEASURES AS DESCRIBED BELOW.
- 5. THE CRITICAL STAGES OF IMPLEMENTATION OF THIS PCSM PLAN FOR WHICH A LICENSED
- a. CONSTRUCTION OF DETENTION BASINS INFLOW AND OUTFLOW STRUCTURES AND RIP RAP APRONS. b. CONSTRUCTION OF INFILTRATION TRENCHES.

- NECESSARY CLEANING OR REPAIRS SHALL BE DONE AS SOON AS POSSIBLE.

OCTOBER 14, 2013 BY THE NATURAL RESOURCES CONSERVATION SERVICE.

	HYDROLOGIC SOIL GROUP	DEPT	н то	SOILS FEATURES THAT AFFECT:				
		HWT (FT)	BEDROCK (IN)	SHALLOW EXCAVATIONS				
_	D	0.5'-1.5'	40"-60"	VERY LIMITED DEPTH TO SATURATED ZONE				
_	С	1.5'-2.5'	40"-60"	VERY LIMITED DEPTH TO SATURATED ZONE LIMITED DEPTH TO BEDROCK				
-	В	>6.5'	20"-40"	NOT LIMITED				

REVISION	IS :			
DATE	DESCRIPTION	DATE	DESCRIPTION	SNIPES TRACT ATHLETIC FIELDS
01/31/1	7 PLANS UPDATED WITH INFILTRATION PIT LOCATIONS AND NPDES NOTES			LOWER MAKEFIELD TOWNSHIP
05/02/1	7 PER ENGINEER REVIEW LETTER			BUCKS COUNTY, PENNSYLVANIA
05/16/1	7 PER ENGINEER & EAC REVIEW LETTERS			
05/19/1	7 REVISED INFILTRATION TRENCH INLET 2 TO 3			
06/07/1	7 REVISED PER CONDITIONS OF APPROVAL			LOWER MAKEFIELD TOWNSHIP
06/30/1	7 REVISED PER PRE-BID MEETING			1100 EDGEWOOD ROAD
07/07/1	7 REVISED PER ADDENDUM 2			
10/20/1	7 REVISED EXISTING AND PROPOSED WATER LINE			YARDLEY, PA 19067