POST CONSTRUCTION STORMWATER MANAGEMENT REPORT

SNIPES TRACT ATHLETIC FIELDS

DOLINGTON ROAD AND QUARRY ROAD
LOWER MAKEFIELD TOWNSHIP
BUCKS COUNTY, PENNSYLVANIA
PROJECT NO. 1677054L
Prepared for:
LOWER MAKEFIELD TOWNSHIP
1100 EDGEWOOD ROAD
YARDLEY, PENNSYLVANIA 19067
NOVEMBER 18, 2016
Revised MAY 30, 2017
Revised JULY 17, 2017
Prepared by:

BOUCHER \& JAMES, INC.
 Consulting Engineers

Corporate Office Fountainville Professional Building 1456 Ferry Road, Building 500 Doylestown, PA 18901	Plan prepared by and under direction of: Maryellen Saylor, P.E. of the Corporate Office
(215) 345-9400 Fax (215) 345-9401	
Regional Office	
559 Main Street, Suite 230	
Bethlehem, PA 18018	
(610) 419-9407	

IMPORTANT
A copy of this report must be on the site at all times during construction.

TABLE OF CONTENTS

SITE DESCRIPTION \& ANALYSIS Page 2
PROJECT DESCRIPTION Page 2
WATERSHED DESCRIPTION \& HYDROLOGY Page 2
PCSM COMPLETENESS REVIEW CHECKLIST NOTE Page 3
POTENTIAL FOR THERMAL IMPACTS ADDRESSED Page 3
RESULTS SUMMARY TABLES \& DESIGN CRITERIA Page 4
COMPUTATION METHODS Page 5
SOILS TYPES, DESCRIPTIONS, AND LIMITATIONS Page 5
SOILS USE LIMITATIONS RESOLUTIONS. Page 6

LIST OF APPENDICES

\checkmark Appendix A: Site Location Page A-1
\checkmark Appendix B: Pre-Development Drainage Calculations Page B-1
\checkmark Appendix C: Post-Development Drainage Calculations. Page C-1
\checkmark Appendix D: Storm Sewer and Riprap Design. Page D-1
\checkmark Appendix E: Geotechnical Report and Soil Infiltration Test Results Page E-1\checkmark Appendix F: Worksheets 1 through 5, Worksheet 10, BMP Chart 5.B.....Page F-1\checkmark Appendix G: NOI Required DocumentsPage G-1
\checkmark Appendix H: PCSM Completeness Review Checklist Page H-1

ATTACHMENTS

\checkmark Predevelopment Drainage Area Map
\checkmark Post Construction Stormwater Management Plans

POST CONSTRUCTION STORMWATER MANAGEMENT PLAN

SITE DESCRIPTION \& ANALYSIS
T.M.P. 20-016-001 \& 20-016-002 LOWER MAKEFIELD TOWNSHIP

PROJECT DESCRIPTION

At the request of Lower Makefield Township, a stormwater management and erosion control study was conducted for the land development of a 36.26 acre property. The site is located within the Township owned Snipes Tract on Dolington Road (State Route SR 2075) and Quarry Road (Township Road Number T469), northwest of and adjacent to the intersection of the two roads in Lower Makefield Township, Bucks County, PA. The area of the site is 36.26 acres, the property being Tax Map Parcels 20-016-001-001 and 20-016-002. Access to the site is presently provided via an existing drive from Dolington Road. The site presently consists of a paved entrance drive, a gravel loop road, open grassed areas, former tree nursery areas, a Township salt shed and a buffer of trees along Interstate 95 and the existing adjacent residential properties. The Township proposes the construction of a municipal athletic field complex, which will include one entrance drive each from Dolington Road and Quarry Road, an internal loop road with parking areas, one small and three large athletic fields, a pavilion, a concession stand with restrooms, a future skatepark, a walking trail system, and stormwater management facilities on the site. The site is proposed to be served by public water and sewer. The site will continue to be accessed by an existing drive from Dolington Road and a proposed drive from Quarry Road. The proposed earth disturbance of the site is approximately 24.99 acres. The disturbance of trees will be minimized with the proposed project design. The locations and functions of the proposed detention basin and infiltration trenches have been carefully planned to effectively manage the stormwater, while recharging the ground. The protection of the natural resources is one of the main priorities of the development of this site. This study provides relevant site information, including existing and proposed stormwater runoff flow rates and volumes, to assist in evaluating the proposed project.

WATERSHED DESCRIPTION \& HYDROLOGY

The pre-developed site consists of a paved entrance drive, a gravel loop road, open grassed areas, former tree nursery areas, and a buffer of trees along Interstate 95 and the existing adjacent residential properties. The drainage areas of the site were analyzed as woodlands, orchard, grass, bare earth, and paved areas. One portion of the site drains southeastward towards Quarry Road, and then to the intersection with Dolington Road to the existing offsite drainage ditch. The remaining area drains eastward towards Dolington Road and then to the intersection with Quarry Road to the existing offsite drainage ditch. The post-developed site will keep the existing drainage patterns generally in place. The proposed storm sewer has been disconnected to discharge overland through rip rap aprons into the detention basin. Infiltration trenches are proposed for ground recharge, stormwater management and water quality before discharging into the detention basin. The proposed development of the site will reduce the runoff rates to the
adjacent roads and downstream offsite drainage ditch. There will be no adverse impacts to the downstream properties with the proposed improvements. The closest waterway is Buck Creek. The Chapter 93 receiving Water Classification is WWF, MF (Warm Water Fishes, Migratory Fishes). The amount of stormwater that is discharged through the BMP'S is $\mathbf{2 . 2}$ acre-feet during a 2 year storm.

There are no naturally occurring geologic formations or soil conditions, such as Karst or Carbonate geology, that may have the potential to cause pollution during earth moving activities.

PCSM COMPLETENESS REVIEW CHECKLIST NOTES

The PCSM Plan is separate from the E\&S Plan, is labeled "Post Construction Stormwater Management Plan" and shall be the Final Plan for Construction. The PCSM Plan has been designed/ prepared to:

- Preserve the integrity of the stream channels and maintain and protect the physical, biological and chemical qualities of the receiving stream.
- Prevent an increase in the rate of stormwater runoff.
- Minimize any increase in stormwater runoff volume.
- Minimize impervious areas.
- Maximize the protection of existing drainage features and existing vegetation.
- Minimize land clearing and grading.
- Minimize soil compaction.
- Utilize other structural or nonstructural BMP's that prevent or minimize changes in stormwater runoff.

The Present Land Use for the past five (5) years have been a leaf and mulch storage yard for the Township Public Works Department and an abandoned tree nursery. The Past Land Uses for the past 50 years have been agriculture and a tree nursery.

POTENTIAL FOR THERMAL IMPACTS ADDRESSED

1. Restricting the disturbance of onsite wooded areas and planting of trees (for shade and reduction of temperature).
2. Removing compacted bare ground, stone and paved areas onsite and replacing the areas with grassed athletic fields, which will promote infiltration, velocity of flow reduction and water temperature reduction.
3. Disconnection of storm sewer and roof drains to reduce the velocity of flow and allow for infiltration.
4. Construction of a stormwater detention basin to collect, cool and potentially infiltrate runoff before it is discharged at a controlled rate.
5. Construction of four (2) infiltration trenches to collect, store, cool and infiltrate stormwater runoff.

RESULTS SUMMARY: PEAK RUNOFF RATE TO INTERSECTION OF QUARRY ROAD AND DOLINGTON ROAD

Storm Event (Year)	Rainfall (inches)			
		Pre-development Conditions (cfs)	Post-development Discharge (cfs)	Postdev Reduction From Pre-dev Condition (\%)
1	2.64	4.91	2.67	45.6\%
2	3.36	13.27	4.86	63.4\%
5	4.32	28.95	10.17	64.9\%
10	5.28	47.69	29.71	37.7\%
25	6.24	68.65	48.35	29.6\%
50	7.20	91.14	64.02	29.8\%
100	8.40	120.75	78.49	35.0\%

The site is located in the Delaware River South Watershed. The peak rate of runoff to the intersection of Quarry Road and Dolington Road will be decreased from actual existing conditions to proposed conditions by $\mathbf{6 3 . 4 \%}$ for the 2-year and $\mathbf{3 5 . 0 \%}$ for the $\mathbf{1 0 0}$-year storms.

The critical stages of implementation of the PCSM, for which a licensed professional or designee shall be present on-site, are the installation of the infiltration trenches, the detention basin, the riprap aprons at the endwalls and the installation of the permanent orifice plate for the detention basin outlet structure.

The following permanent PCSM BMPs shall be installed:

- Two (2) Infiltration trenches
- Stormwater detention basin
- Three (3) Riprap aprons at the storm sewer outfalls
- Landscape Restoration

COMPUTATION METHODS

The design of the stormwater management proposed for this project has been performed with the aid of the Hydraflow Hydrographs Extension for AutoCAD Civil 3D 2009 software package. Hydraflow was developed by Autodesk, Inc., San Rafael, California. The runoff hydrographs were calculated utilizing the Soil Conservation Service (SCS), or also known as the National Resource Conservation Service (NRCS) method within the Hydraflow software.

The PCSM stormwater management calculations demonstrate that rate, volume and water quality were met in accordance with the Delaware River South Watershed Act 167 Plan, dated May 11, 2011.

SOILS CHARACTERISTICS AND LIMITATIONS

	Limitations						
Soil Series \& Map Symbol	Bldg w/out Basements	Bldg w/ Basements	$\underset{\substack{\text { Small } \\ \text { Commercial } \\ \text { Bldgs }}}{ }$	Hydrologic Soil Group	Depth to Seasonal High Water Table	Depth to Bedrock	Erodibility
Abbottstown Silt Loam, 3 to 8\% (AbB)	Very Limited, Depth to saturated zone	Very Limited, Depth to saturated zone	Very Limited, Depth to saturated zone	D	6 " - 18"	40"- 60 "	Slight Moderate
Fountainville Silt Loam, 3 to 8\% (FoB)	Very Limited, Depth to saturated zone Limited, Depth to bedrock	Very Limited, Depth to saturated zone Limited, Depth to bedrock	Very Limited, Depth to saturated zone Limited, Depth to bedrock	C	18" - 30"	40"- $60 \prime$	SlightModerate
Penns-Lansdale Complex 3 to 8\% (PnB)	Not Limited	Not Limited	Not Limited	B	>78"	20"-40"	SlightModerate

SOILS USE LIMITATIONS RESOLUTIONS

CHARACTERISTIC	RESOLUTION				
ERODIBLE	Stabilize immediately after grading. Shape earthwork to reduce concentrated flow areas across bare earth. Provide and maintain effective erosion controls downstream of soil.				
HIGH WATER TABLE/ DEPTH TO SATURATION ZONE	Provide adequate underdrain. Avoid basement construction. Any ponded water should be pumped to an adequate erosion and sedimentation control facility. For example, to a sedimentation basin/trap or to a dirt bag.				
PONDING	Provide dewatering during construction activities. Provide adequate underdrain/floodproofing for permanent structures.				
CUTBANKS CAVE	Use proper slope stabilization, minimize cutbank slope	$	$	DEPTH TO HARD	Blasting may be required if bedrock is encountered which is not rippable.
:---	:---				

APPENDIX A:

SITE LOCATION

APPENDIX B:

PRE-DEVELOPMENT DRAINAGE CALCULATIONS

Watershed Model Schematic

Hydrograph Return Period Recap

Hydrograph Summary Report

 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4| Hyd.
 No. | $\begin{aligned} & \text { Hydrograph } \\ & \text { type } \\ & \text { (origin) } \end{aligned}$ | Peak flow (cfs) | Time interval (min) | Time to Peak (min) | Hyd. volume (cuft) | Inflow
 hyd(s) | Maximum elevation (ft) | Total strge used (cuft) | Hydrograph
 Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SCS Runoff | 1.010 | 2 | 744 | 11,616 | ------ | ------ | ------ | Predev DA to Quarry Road |
| 2 | SCS Runoff | 3.939 | 2 | 736 | 26,190 | ------ | --- | ------ | Predev DA to Dolington Road |
| 3 | Combine | 4.906 | 2 | 736 | 37,807 | 1, 2 | --- | ----- | Predev to Intersection |
| 4 | SCS Runoff | 0.596 | 2 | 748 | 6,683 | ------ | ----- | ---- | Postdev Bypass DA to Quarry Road |
| 5 | SCS Runoff | 8.247 | 2 | 738 | 48,117 | ------ | ------ | ------ | Postdev to Detention Basin |
| 6 | SCS Runoff | 0.200 | 2 | 732 | 1,263 | ------ | ------ | ------ | Postdev Bypass Flow to Dolington Ro |
| 7 | Reservoir | 2.134 | 2 | 780 | 46,021 | 5 | 161.11 | 13,460 | DetentionBasin Outflow |
| 8 | Combine | 2.673 | 2 | 760 | 53,967 | 4, 6, 7 | ------ | ------ | Postdev to Intersection |
| 10 | Reservoir | 0.146 | 2 | 1468 | 21,337 | 5 | 162.53 | 44,051 | Sediment Basin |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| Basin design.gpw | | | | | Return Period: 1 Year | | | Friday, 07 / 14 / 2017 | |

Hyd. No. 1

Predev DA to Quarry Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=1.010 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=744 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=11,616 \mathrm{cuft}$
Drainage area	$=16.800 \mathrm{ac}$	Curve number	$=59$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=27.10 \mathrm{~min}$
Total precip.	$=2.64 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Predev DA to Quarry Road

Hyd. No. 1

Predev DA to Quarry Road

Description	A		B		C		Totals
Sheet Flow							
Manning's n-value	$=0.350$		0.011		0.011		
Flow length (ft)	= 150.0		0.0		0.0		
Two-year 24-hr precip. (in)	$=3.36$		0.00		0.00		
Land slope (\%)	$=5.33$		0.00		0.00		
Travel Time (min)	$=17.60$	+	0.00	+	0.00	=	17.60
Shallow Concentrated Flow							
Flow length (ft)	$=280.00$		490.00		920.00		
Watercourse slope (\%)	$=2.50$		4.20		2.10		
Surface description	= Unpaved		Unpaved		Paved		
Average velocity (ft/s)	=2.55		3.31		2.95		
Travel Time (min)	$=1.83$	+	2.47	+	5.21	=	9.50
Channel Flow							
X sectional flow area (sqft)	$=0.00$		0.00		0.00		
Wetted perimeter (ft)	$=0.00$		0.00		0.00		
Channel slope (\%)	$=0.00$		0.00		0.00		
Manning's n-value	$=0.015$		0.015		0.015		
Velocity (ft/s)	$=0.00$		0.00				
					0.00		
Flow length (ft)	(\{0\})0.0		0.0		0.0		
Travel Time (min)	$=0.00$	+	0.00	+	0.00	$=$	0.00
Total Travel Time, Tc		27.10 m

Hyd. No. 2

Predev DA to Dolington Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=3.939 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=736 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=26,190 \mathrm{cuft}$
Drainage area	$=18.600 \mathrm{ac}$	Curve number	$=66$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. $($ Tc)	$=31.20 \mathrm{~min}$
Total precip.	$=2.64 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Predev DA to Dolington Road

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4
Hyd. No. 2
Predev DA to Dolington Road

Description	A		B		\underline{C}		Totals
Sheet Flow							
Manning's n-value	$=0.350$		0.011		0.011		
Flow length (ft)	= 150.0		0.0		0.0		
Two-year 24-hr precip. (in)	$=3.36$		0.00		0.00		
Land slope (\%)	$=6.67$		0.00		0.00		
Travel Time (min)	$=16.09$	+	0.00	+	0.00	=	16.09
Shallow Concentrated Flow							
Flow length (ft)	$=1450.00$		650.00		0.00		
Watercourse slope (\%)	$=1.50$		3.40		0.00		
Surface description	= Unpaved		Paved		Paved		
Average velocity (ft/s)	=1.98		3.75		0.00		
Travel Time (min)	$=12.23$	+	2.89	+	0.00	=	15.12
Channel Flow							
X sectional flow area (sqft)	$=0.00$		0.00		0.00		
Wetted perimeter (ft)	$=0.00$		0.00		0.00		
Channel slope (\%)	$=0.00$		0.00		0.00		
Manning's n-value	$=0.015$		0.015		0.015		
Velocity (ft/s)	$=0.00$		0.00				
					0.00		
Flow length (ft)	(\{0\})0.0		0.0		0.0		
Travel Time (min)	$=0.00$	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc		31.20 m

Hyd. No. 3

Predev to Intersection

Hydrograph type	$=$ Combine	Peak discharge	$=4.906 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=736 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=37,807 \mathrm{cuft}$
Inflow hyds.	$=1,2$	Contrib. drain. area	$=35.400 \mathrm{ac}$

Hydrograph Summary Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

Predev DA to Quarry Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=4.002 \mathrm{cfs}$
Storm frequency	$=2 \mathrm{yrs}$	Time to peak	$=734 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=26,520 \mathrm{cuft}$
Drainage area	$=16.800 \mathrm{ac}$	Curve number	$=59$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=27.10 \mathrm{~min}$
Total precip.	$=3.36 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Predev DA to Quarry Road
Hyd. No. 1 -- 2 Year
Q (cfs)

Hyd. No. 2

Predev DA to Dolington Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=9.282 \mathrm{cfs}$
Storm frequency	$=2$ yrs	Time to peak	$=736 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=49,595 \mathrm{cuft}$
Drainage area	$=18.600 \mathrm{ac}$	Curve number	$=66$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=T R 55$	Time of conc. (Tc)	$=31.20 \mathrm{~min}$
Total precip.	$=3.36 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Predev DA to Dolington Road
Q (cfs)
Hyd. No. 2 -- 2 Year

Hyd No. 2

Hyd. No. 3

Predev to Intersection

Hydrograph type	$=$ Combine	Peak discharge	$=13.27 \mathrm{cfs}$
Storm frequency	$=2 \mathrm{yrs}$	Time to peak	$=734 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=76,115 \mathrm{cuft}$
Inflow hyds.	$=1,2$	Contrib. drain. area	$=35.400 \mathrm{ac}$

Hydrograph Summary Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

Predev DA to Quarry Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=10.45 \mathrm{cfs}$
Storm frequency	$=5 \mathrm{yrs}$	Time to peak	$=734 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=52,999 \mathrm{cuft}$
Drainage area	$=16.800 \mathrm{ac}$	Curve number	$=59$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=27.10 \mathrm{~min}$
Total precip.	$=4.32 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Predev DA to Quarry Road
Hyd. No. 1 -- 5 Year

Hyd No. 1

Hyd. No. 2
Predev DA to Dolington Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=18.50 \mathrm{cfs}$
Storm frequency	$=5 \mathrm{yrs}$	Time to peak	$=734 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=87,644 \mathrm{cuft}$
Drainage area	$=18.600 \mathrm{ac}$	Curve number	$=66$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=31.20 \mathrm{~min}$
Total precip.	$=4.32 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Predev DA to Dolington Road

Q (cfs)
Hyd. No. 2 -- 5 Year
21.00 Q

Hyd. No. 3

Predev to Intersection

Hydrograph type	$=$ Combine	Peak discharge	$=28.95 \mathrm{cfs}$
Storm frequency	$=5 \mathrm{yrs}$	Time to peak	$=734 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=140,643 \mathrm{cuft}$
Inflow hyds.	$=1,2$	Contrib. drain. area	$=35.400 \mathrm{ac}$

Predev to Intersection
Hyd. No. 3 -- 5 Year \quad (cfs)

Hydrograph Summary Report

 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

Predev DA to Quarry Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=18.86 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=732 \mathrm{~min}$
Time interval	$=2$ min	Hyd. volume	$=85,143 \mathrm{cuft}$
Drainage area	$=16.800 \mathrm{ac}$	Curve number	$=59$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=27.10 \mathrm{~min}$
Total precip.	$=5.28 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Predev DA to Quarry Road

Q (cfs)
21.00 Hyd. No. 1 - 10 Year

Hyd. No. 2

Predev DA to Dolington Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=29.05 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=734 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=131,325 \mathrm{cuft}$
Drainage area	$=18.600 \mathrm{ac}$	Curve number	$=66$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=31.20 \mathrm{~min}$
Total precip.	$=5.28 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Predev DA to Dolington Road

Hyd. No. 3

Predev to Intersection

Hydrograph type	$=$ Combine	Peak discharge	$=47.69 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=734 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=216,468 \mathrm{cuft}$
Inflow hyds.	$=1,2$	Contrib. drain. area	$=35.400 \mathrm{ac}$

Hydrograph Summary Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

Predev DA to Quarry Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=28.40 \mathrm{cfs}$
Storm frequency	$=25 \mathrm{yrs}$	Time to peak	$=732 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=121,583 \mathrm{cuft}$
Drainage area	$=16.800 \mathrm{ac}$	Curve number	$=59$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=27.10 \mathrm{~min}$
Total precip.	$=6.24 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Predev DA to Quarry Road

Hyd. No. 2

Predev DA to Dolington Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=40.49 \mathrm{cfs}$
Storm frequency	$=25 \mathrm{yrs}$	Time to peak	$=734 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=179,073 \mathrm{cuft}$
Drainage area	$=18.600 \mathrm{ac}$	Curve number	$=66$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=31.20 \mathrm{~min}$
Total precip.	$=6.24 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Predev DA to Dolington Road

Q (cfs)
50.00

Q (cfs)
50.00

Hyd No. 2
Time (min)

Hyd. No. 3

Predev to Intersection

Hydrograph type	$=$ Combine	Peak discharge	$=68.65 \mathrm{cfs}$
Storm frequency	$=25 \mathrm{yrs}$	Time to peak	$=732 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=300,655 \mathrm{cuft}$
Inflow hyds.	$=1,2$	Contrib. drain. area	$=35.400 \mathrm{ac}$

Hydrograph Summary Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

Predev DA to Quarry Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=38.74 \mathrm{cfs}$
Storm frequency	$=50 \mathrm{yrs}$	Time to peak	$=732 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=161,349 \mathrm{cuft}$
Drainage area	$=16.800$ ac	Curve number	$=59$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=27.10 \mathrm{~min}$
Total precip.	$=7.20 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Predev DA to Quarry Road

Hyd. No. 2

Predev DA to Dolington Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=52.56 \mathrm{cfs}$
Storm frequency	$=50 \mathrm{yrs}$	Time to peak	$=734 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=229,853 \mathrm{cuft}$
Drainage area	$=18.600 \mathrm{ac}$	Curve number	$=66$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=31.20 \mathrm{~min}$
Total precip.	$=7.20$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Predev DA to Dolington Road
Hyd. No. 2 -- 50 Year $\quad Q$ (cfs)

Hyd. No. 3

Predev to Intersection

Hydrograph type	$=$ Combine	Peak discharge	$=91.14 \mathrm{cfs}$
Storm frequency	$=50 \mathrm{yrs}$	Time to peak	$=732 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=391,201 \mathrm{cuft}$
Inflow hyds.	$=1,2$	Contrib. drain. area	$=35.400 \mathrm{ac}$

Hydrograph Summary Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

Predev DA to Quarry Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=52.51 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=732 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=214,688 \mathrm{cuft}$
Drainage area	$=16.800 \mathrm{ac}$	Curve number	$=59$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=27.10 \mathrm{~min}$
Total precip.	$=8.40 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Predev DA to Quarry Road
Hyd. No. 1 -- 100 Year
Q (cfs)
Q (cfs)

Hyd No. 1

Hyd. No. 2

Predev DA to Dolington Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=68.27 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=734 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=296,529 \mathrm{cuft}$
Drainage area	$=18.600 \mathrm{ac}$	Curve number	$=66$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=31.20 \mathrm{~min}$
Total precip.	$=8.40 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Predev DA to Dolington Road
Hyd. No. 2 -- 100 Year
Q (cfs)

Hyd. No. 3

Predev to Intersection

Hydrograph type	$=$ Combine	Peak discharge	$=120.75 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=732 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=511,218 \mathrm{cuft}$
Inflow hyds.	$=1,2$	Contrib. drain. area	$=35.400 \mathrm{ac}$

Predev to Intersection
Hyd. No. 3 -- 100 Year \quad (cfs)

Watershed Model Schematic. 1
Hydrograph Return Period Recap 2
1 - Year
Summary Report. 3
Hydrograph Reports 4
Hydrograph No. 1, SCS Runoff, Predev DA to Quarry Road. 4
TR-55 Tc Worksheet 5
Hydrograph No. 2, SCS Runoff, Predev DA to Dolington Road. 6
TR-55 Tc Worksheet 7
Hydrograph No. 3, Combine, Predev to Intersection 8
2 - Year
Summary Report. 9
Hydrograph Reports 10
Hydrograph No. 1, SCS Runoff, Predev DA to Quarry Road. 10
Hydrograph No. 2, SCS Runoff, Predev DA to Dolington Road. 11
Hydrograph No. 3, Combine, Predev to Intersection 12
5 - Year
Summary Report 13
Hydrograph Reports 14
Hydrograph No. 1, SCS Runoff, Predev DA to Quarry Road. 14
Hydrograph No. 2, SCS Runoff, Predev DA to Dolington Road. 15
Hydrograph No. 3, Combine, Predev to Intersection. 16
10 - Year
Summary Report 17
Hydrograph Reports 18
Hydrograph No. 1, SCS Runoff, Predev DA to Quarry Road. 18
Hydrograph No. 2, SCS Runoff, Predev DA to Dolington Road. 19
Hydrograph No. 3, Combine, Predev to Intersection 20
25 - Year
Summary Report 21
Hydrograph Reports 22
Hydrograph No. 1, SCS Runoff, Predev DA to Quarry Road. 22
Hydrograph No. 2, SCS Runoff, Predev DA to Dolington Road. 23
Hydrograph No. 3, Combine, Predev to Intersection. 24
50 - Year
Summary Report. 25
Hydrograph Reports 26
Hydrograph No. 1, SCS Runoff, Predev DA to Quarry Road. 26
Hydrograph No. 2, SCS Runoff, Predev DA to Dolington Road. 27
Hydrograph No. 3, Combine, Predev to Intersection. 28
100 - YearSummary Report.29
Hydrograph Reports 30
Hydrograph No. 1, SCS Runoff, Predev DA to Quarry Road. 30
Hydrograph No. 2, SCS Runoff, Predev DA to Dolington Road. 31
Hydrograph No. 3, Combine, Predev to Intersection 32

APPENDIX C:

POST-DEVELOPMENT DRAINAGE CALCULATIONS

Watershed Model Schematic

Hydrograph Return Period Recap

Hydrograph Summary Report

 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4| Hyd.
 No. | $\begin{aligned} & \text { Hydrograph } \\ & \text { type } \\ & \text { (origin) } \end{aligned}$ | Peak flow (cfs) | Time interval (min) | Time to Peak (min) | Hyd. volume (cuft) | Inflow
 hyd(s) | Maximum elevation (ft) | Total strge used (cuft) | Hydrograph
 Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SCS Runoff | 1.010 | 2 | 744 | 11,616 | ------ | ------ | ------ | Predev DA to Quarry Road |
| 2 | SCS Runoff | 3.939 | 2 | 736 | 26,190 | ------ | --- | ------ | Predev DA to Dolington Road |
| 3 | Combine | 4.906 | 2 | 736 | 37,807 | 1, 2 | --- | ----- | Predev to Intersection |
| 4 | SCS Runoff | 0.596 | 2 | 748 | 6,683 | ------ | ----- | ---- | Postdev Bypass DA to Quarry Road |
| 5 | SCS Runoff | 8.247 | 2 | 738 | 48,117 | ------ | ------ | ------ | Postdev to Detention Basin |
| 6 | SCS Runoff | 0.200 | 2 | 732 | 1,263 | ------ | ------ | ------ | Postdev Bypass Flow to Dolington Ro |
| 7 | Reservoir | 2.134 | 2 | 780 | 46,021 | 5 | 161.11 | 13,460 | DetentionBasin Outflow |
| 8 | Combine | 2.673 | 2 | 760 | 53,967 | 4, 6, 7 | ------ | ------ | Postdev to Intersection |
| 10 | Reservoir | 0.146 | 2 | 1468 | 21,337 | 5 | 162.53 | 44,051 | Sediment Basin |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| Basin design.gpw | | | | | Return Period: 1 Year | | | Friday, 07 / 14 / 2017 | |

Hyd. No. 4

Postdev Bypass DA to Quarry Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.596 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=12.47 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=6,683 \mathrm{cuft}$
Drainage area	$=8.700 \mathrm{ac}$	Curve number	$=60$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=35.80 \mathrm{~min}$
Total precip.	$=2.64 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 4
Postdev Bypass DA to Quarry Road

Description	A		B		\underline{C}		Totals
Sheet Flow							
Manning's n-value	$=0.400$		0.011		0.011		
Flow length (ft)	$=150.0$		0.0		0.0		
Two-year 24-hr precip. (in)	$=3.36$		0.00		0.00		
Land slope (\%)	$=2.67$		0.00		0.00		
Travel Time (min)	$=25.82$	+	0.00	+	0.00	=	25.82
Shallow Concentrated Flow							
Flow length (ft)	$=580.00$		1260.00		0.00		
Watercourse slope (\%)	$=3.60$		2.30		0.00		
Surface description	= Unpaved		Paved		Paved		
Average velocity (ft/s)	=3.06		3.08		0.00		
Travel Time (min)	$=3.16$	+	6.81	+	0.00	=	9.97
Channel Flow							
X sectional flow area (sqft)	$=0.00$		0.00		0.00		
Wetted perimeter (ft)	$=0.00$		0.00		0.00		
Channel slope (\%)	$=0.00$		0.00		0.00		
Manning's n-value	$=0.015$		0.015		0.015		
Velocity (ft/s)	$=0.00$		0.00				
					0.00		
Flow length (ft)	(\{0\})0.0		0.0		0.0		
Travel Time (min)	$=0.00$	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc		35.80 m

Hyd. No. 5

Postdev to Detention Basin

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=8.247 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=12.30 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=48,117 \mathrm{cuft}$
Drainage area	$=25.600 \mathrm{ac}$	Curve number	$=70$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=36.30 \mathrm{~min}$
Total precip.	$=2.64 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Postdev to Detention Basin

Q (cfs)

Hyd. No. 5-- 1 Year

Q (cfs)

Hyd. No. 5

Postdev to Detention Basin

Description	A		B		\underline{C}	Totals
Sheet Flow						
Manning's n-value	$=0.400$		0.011		0.011	
Flow length (ft)	$=150.0$		0.0		0.0	
Two-year 24-hr precip. (in)	$=3.36$		0.00		0.00	
Land slope (\%)	$=2.20$		0.00		0.00	
Travel Time (min)	$=27.90$	+	0.00	+	0.00	27.90
Shallow Concentrated Flow						
Flow length (ft)	$=660.00$		250.00		65.00	
Watercourse slope (\%)	$=1.70$		0.60		1.50	
Surface description	= Unpaved		Paved		Unpaved	
Average velocity (ft/s)	$=2.10$		1.57		1.98	
Travel Time (min)	$=5.23$	+	2.65	+	0.55	8.42
Channel Flow						
X sectional flow area (sqft)	$=0.00$		0.00		0.00	
Wetted perimeter (ft)	$=0.00$		0.00		0.00	
Channel slope (\%)	$=0.00$		0.00		0.00	
Manning's n-value Velocity (ft/s)	$=0.015$		0.015		0.015	
	$=0.00$		0.00			
					0.00	
Flow length (ft)	(\{0\})0.0		0.0		0.0	
Travel Time (min)	$=0.00$	+	0.00	+	$0.00=$	0.00
Total Travel Time, Tc ..						36.30 m

Hyd. No. 6

Postdev Bypass Flow to Dolington Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.200 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=12.20 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=1,263 \mathrm{cuft}$
Drainage area	$=1.100 \mathrm{ac}$	Curve number	$=64$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=24.90 \mathrm{~min}$
Total precip.	$=2.64 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 6
Postdev Bypass Flow to Dolington Road

Description	A		B		\underline{C}		Totals
Sheet Flow							
Manning's n-value	$=0.400$		0.011		0.011		
Flow length (ft)	$=150.0$		0.0		0.0		
Two-year 24-hr precip. (in)	$=3.36$		0.00		0.00		
Land slope (\%)	$=3.60$		0.00		0.00		
Travel Time (min)	$=22.91$	+	0.00	+	0.00	=	22.91
Shallow Concentrated Flow							
Flow length (ft)	$=400.00$		0.00		0.00		
Watercourse slope (\%)	$=4.40$		0.00		0.00		
Surface description	= Unpaved		Paved		Paved		
Average velocity (ft/s)	$=3.38$		0.00		0.00		
Travel Time (min)	$=1.97$	+	0.00	+	0.00	$=$	1.97
Channel Flow							
X sectional flow area (sqft)	$=0.00$		0.00		0.00		
Wetted perimeter (ft)	$=0.00$		0.00		0.00		
Channel slope (\%)	$=0.00$		0.00		0.00		
Manning's n-value	$=0.015$		0.015		0.015		
Velocity (ft/s)	$=0.00$		0.00				
					0.00		
Flow length (ft)	(\{0\})0.0		0.0		0.0		
Travel Time (min)	$=0.00$	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc		24.90

Hyd. No. 7

DetentionBasin Outflow

Hydrograph type	$=$ Reservoir	Peak discharge	$=2.134 \mathrm{cfs}$
Storm frequency	$=1$ yrs	Time to peak	$=13.00 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=46,021 \mathrm{cuft}$
Inflow hyd. No.	$=5-$ Postdev to Detention BasinMax. Elevation	$=161.11 \mathrm{ft}$	
Reservoir name	$=$ Basin No. 1	Max. Storage	$=13,460 \mathrm{cuft}$

Storage Indication method used. Exfiltration extracted from Outflow.

DetentionBasin Outflow
Hyd. No. 7 -- 1 Year

Total storage used $=13,460$ cuft

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4
Pond No. 1 - Basin No. 1

Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation $=159.50 \mathrm{ft}$

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)			Incr. Storage (cuft)	Total storage (cuft)			
0.00	159.50		00		0		0		
0.50	160.00		1,543		386				
2.50	162.00		22,000		23,543				
4.50	164.00		53,882		75,882				
6.50	166.00		62,428		116,310	216			
Culvert / Orifice Structures					Weir Structures				
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	$=36.00$	6.00	8.00	0.00	Crest Len (ft)	$=12.00$	100.00	Inactive	Inactive
Span (in)	$=36.00$	6.00	45.00	0.00	Crest El. (ft)	$=164.00$	164.50	0.00	0.00
No. Barrels	$=1$	2	4	0	Weir Coeff.	$=3.33$	3.33	3.33	3.33
Invert El. (ft)	$=159.30$	159.50	162.66	0.00	Weir Type	$=1$	Broad	Rect	Rect
Length (ft)	$=45.00$	0.00	0.00	0.00	Multi-Stage	$=$ Yes	Yes	No	No
Slope (\%)	$=2.89$	0.00	0.00	n/a					
N -Value	$=.013$. 013	. 013	n/a					
Orifice Coeff.	$=0.60$	0.60	0.60	0.60	Exfil.(in/hr)	$=0.500$ (b)	Contour)		
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	$=0.00$			

Hyd. No. 8

Postdev to Intersection

Hydrograph type	$=$ Combine	Peak discharge	$=2.673 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=12.67 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=53,967 \mathrm{cuft}$
Inflow hyds.	$=4,6,7$	Contrib. drain. area	$=9.800 \mathrm{ac}$

Hydrograph Summary Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 4

Postdev Bypass DA to Quarry Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=2.070 \mathrm{cfs}$
Storm frequency	$=2 \mathrm{yrs}$	Time to peak	$=12.30 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=14,751 \mathrm{cuft}$
Drainage area	$=8.700 \mathrm{ac}$	Curve number	$=60$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=35.80 \mathrm{~min}$
Total precip.	$=3.36$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 5

Postdev to Detention Basin

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=16.63 \mathrm{cfs}$
Storm frequency	$=2 \mathrm{yrs}$	Time to peak	$=12.27 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=84,777 \mathrm{cuft}$
Drainage area	$=25.600 \mathrm{ac}$	Curve number	$=70$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=36.30 \mathrm{~min}$
Total precip.	$=3.36 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hydrograph Report

Hyd. No. 6

Postdev Bypass Flow to Dolington Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.526 \mathrm{cfs}$
Storm frequency	$=2 \mathrm{yrs}$	Time to peak	$=12.17 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=2,498 \mathrm{cuft}$
Drainage area	$=1.100 \mathrm{ac}$	Curve number	$=64$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=24.90 \mathrm{~min}$
Total precip.	$=3.36 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 7

DetentionBasin Outflow

Hydrograph type	$=$ Reservoir	Peak discharge	$=2.849 \mathrm{cfs}$
Storm frequency	$=2$ yrs	Time to peak	$=13.17 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=79,181 \mathrm{cuft}$
Inflow hyd. No.	$=5-$ Postdev to Detention BasinMax. Elevation	$=162.19 \mathrm{ft}$	
Reservoir name	$=$ Basin No. 1	Max. Storage	$=31,099 \mathrm{cuft}$

Storage Indication method used. Exfiltration extracted from Outflow.

DetentionBasin Outflow
Hyd. No. 7 -- 2 Year

Total storage used $=31,099$ cuft

Hyd. No. 8

Postdev to Intersection

Hydrograph type	$=$ Combine	Peak discharge	$=4.858 \mathrm{cfs}$
Storm frequency	$=2 \mathrm{yrs}$	Time to peak	$=12.43 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=96,430 \mathrm{cuft}$
Inflow hyds.	$=4,6,7$	Contrib. drain. area	$=9.800 \mathrm{ac}$

Postdev to Intersection

Hydrograph Summary Report

 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 4

Postdev Bypass DA to Quarry Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=5.120 \mathrm{cfs}$
Storm frequency	$=5 \mathrm{yrs}$	Time to peak	$=12.30 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=28,851 \mathrm{cuft}$
Drainage area	$=8.700$ ac	Curve number	$=60$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=35.80 \mathrm{~min}$
Total precip.	$=4.32$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 5

Postdev to Detention Basin

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=29.87 \mathrm{cfs}$
Storm frequency	$=5 \mathrm{yrs}$	Time to peak	$=12.27 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=142,177 \mathrm{cuft}$
Drainage area	$=25.600 \mathrm{ac}$	Curve number	$=70$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=36.30 \mathrm{~min}$
Total precip.	$=4.32$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 6
Postdev Bypass Flow to Dolington Road

Hydrograph type	$=$ SCS Runoff
Storm frequency	$=5 \mathrm{yrs}$
Time interval	$=2 \mathrm{~min}$
Drainage area	$=1.100 \mathrm{ac}$
Basin Slope	$=0.0 \%$
Tc method	$=$ TR55
Total precip.	$=4.32 \mathrm{in}$
Storm duration	$=24 \mathrm{hrs}$

Peak discharge	$=1.111 \mathrm{cfs}$
Time to peak	$=12.17 \mathrm{hrs}$
Hyd. volume	$=4,549 \mathrm{cuft}$
Curve number	$=64$
Hydraulic length	$=0 \mathrm{ft}$
Time of conc. (Tc)	$=24.90 \mathrm{~min}$
Distribution	$=$ Type II
Shape factor	$=484$

Postdev Bypass Flow to Dolington Road

Hyd. No. 7

DetentionBasin Outflow

Hydrograph type	$=$ Reservoir	Peak discharge	$=7.914 \mathrm{cfs}$
Storm frequency	$=5 \mathrm{yrs}$	Time to peak	$=12.83 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=131,400 \mathrm{cuft}$
Inflow hyd. No.	$=5-$ Postdev to Detention BasinMax. Elevation	$=162.86 \mathrm{ft}$	
Reservoir name	$=$	Basin No. 1	Max. Storage
			$=56,558 \mathrm{cuft}$

Storage Indication method used. Exfiltration extracted from Outflow.

DetentionBasin Outflow
Hyd. No. 7 -- 5 Year

Hyd. No. 8

Postdev to Intersection

Hydrograph type	$=$ Combine	Peak discharge	$=10.17 \mathrm{cfs}$
Storm frequency	$=5 \mathrm{yrs}$	Time to peak	$=12.77 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=164,800 \mathrm{cuft}$
Inflow hyds.	$=4,6,7$	Contrib. drain. area	$=9.800 \mathrm{ac}$

Hydrograph Summary Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 4
Postdev Bypass DA to Quarry Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=9.025 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=12.27 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=45,822 \mathrm{cuft}$
Drainage area	$=8.700 \mathrm{ac}$	Curve number	$=60$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=35.80 \mathrm{~min}$
Total precip.	$=5.28 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 5

Postdev to Detention Basin

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=44.54 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=12.27 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=206,368 \mathrm{cuft}$
Drainage area	$=25.600 \mathrm{ac}$	Curve number	$=70$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=36.30 \mathrm{~min}$
Total precip.	$=5.28$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 6

Postdev Bypass Flow to Dolington Road

Hydrograph type	$=$ SCS Runoff
Storm frequency	$=10 \mathrm{yrs}$
Time interval	$=2 \mathrm{~min}$
Drainage area	$=1.100 \mathrm{ac}$
Basin Slope	$=0.0 \%$
Tc method	$=$ TR55
Total precip.	$=5.28 \mathrm{in}$
Storm duration	$=24 \mathrm{hrs}$

Peak discharge	$=1.789 \mathrm{cfs}$
Time to peak	$=12.17 \mathrm{hrs}$
Hyd. volume	$=6,938 \mathrm{cuft}$
Curve number	$=64$
Hydraulic length	$=0 \mathrm{ft}$
Time of conc. (Tc)	$=24.90 \mathrm{~min}$
Distribution	$=T y p e ~ \mathrm{II}$
Shape factor	$=484$

Postdev Bypass Flow to Dolington Road

Hyd. No. 7

DetentionBasin Outflow

Hydrograph type	$=$ Reservoir	Peak discharge	$=23.56 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=12.63 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=193,132 \mathrm{cuft}$
Inflow hyd. No.	$=5-$ Postdev to Detention BasinMax. Elevation	$=163.21 \mathrm{ft}$	
Reservoir name	$=$	Basin No. 1	Max. Storage
			$=69,937 \mathrm{cuft}$

Storage Indication method used. Exfiltration extracted from Outflow.

DetentionBasin Outflow

Hyd. No. 8

Postdev to Intersection

Hydrograph type	$=$ Combine	Peak discharge	$=29.71 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=12.57 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=245,892 \mathrm{cuft}$
Inflow hyds.	$=4,6,7$	Contrib. drain. area	$=9.800 \mathrm{ac}$

Hydrograph Summary Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 4

Postdev Bypass DA to Quarry Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=13.44 \mathrm{cfs}$
Storm frequency	$=25 \mathrm{yrs}$	Time to peak	$=12.27 \mathrm{hrs}$
Time interval	$=2$ min	Hyd. volume	$=64,950 \mathrm{cuft}$
Drainage area	$=8.700 \mathrm{ac}$	Curve number	$=60$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=35.80 \mathrm{~min}$
Total precip.	$=6.24 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 5

Postdev to Detention Basin

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=60.15 \mathrm{cfs}$
Storm frequency	$=25 \mathrm{yrs}$	Time to peak	$=12.27 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=275,325 \mathrm{cuft}$
Drainage area	$=25.600 \mathrm{ac}$	Curve number	$=70$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=36.30 \mathrm{~min}$
Total precip.	$=6.24 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 6

Postdev Bypass Flow to Dolington Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=2.531 \mathrm{cfs}$
Storm frequency	$=25 \mathrm{yrs}$	Time to peak	$=12.17 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=9,575 \mathrm{cuft}$
Drainage area	$=1.100 \mathrm{ac}$	Curve number	$=64$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=24.90 \mathrm{~min}$
Total precip.	$=6.24 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 7

DetentionBasin Outflow

Hydrograph type	$=$ Reservoir	Peak discharge	$=37.63 \mathrm{cfs}$
Storm frequency	$=25 \mathrm{yrs}$	Time to peak	$=12.57 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=259,891 \mathrm{cuft}$
Inflow hyd. No.	$=5-$ Postdev to Detention BasinMax. Elevation	$=163.54 \mathrm{ft}$	
Reservoir name	$=$	Basin No. 1	Max. Storage
			$=82,182 \mathrm{cuft}$

Storage Indication method used. Exfiltration extracted from Outflow.

DetentionBasin Outflow

Hyd. No. 8

Postdev to Intersection

Hydrograph type	$=$ Combine	Peak discharge	$=48.35 \mathrm{cfs}$
Storm frequency	$=25 \mathrm{yrs}$	Time to peak	$=12.47 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=334,416 \mathrm{cuft}$
Inflow hyds.	$=4,6,7$	Contrib. drain. area	$=9.800 \mathrm{ac}$

Postdev to Intersection

Hydrograph Summary Report
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 4

Postdev Bypass DA to Quarry Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=18.21 \mathrm{cfs}$
Storm frequency	$=50 \mathrm{yrs}$	Time to peak	$=12.27 \mathrm{hrs}$
Time interval	$=22 \mathrm{~min}$	Hyd. volume	$=85,739 \mathrm{cuft}$
Drainage area	$=8.700 \mathrm{ac}$	Curve number	$=60$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=35.80 \mathrm{~min}$
Total precip.	$=7.20$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 5

Postdev to Detention Basin

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=76.42 \mathrm{cfs}$
Storm frequency	$=50 \mathrm{yrs}$	Time to peak	$=12.23 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=347,759 \mathrm{cuft}$
Drainage area	$=25.600 \mathrm{ac}$	Curve number	$=70$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=36.30 \mathrm{~min}$
Total precip.	$=7.20$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 6

Postdev Bypass Flow to Dolington Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=3.319 \mathrm{cfs}$
Storm frequency	$=50 \mathrm{yrs}$	Time to peak	$=12.13 \mathrm{hrs}$
Time interval	$=22 \mathrm{~min}$	Hyd. volume	$=12,398 \mathrm{cuft}$
Drainage area	$=1.100 \mathrm{ac}$	Curve number	$=64$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=24.90 \mathrm{~min}$
Total precip.	$=7.20$ in	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 7
DetentionBasin Outflow

Hydrograph type	$=$ Reservoir	Peak discharge	$=48.89 \mathrm{cfs}$
Storm frequency	$=50$ yrs	Time to peak	$=12.53 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=330,285 \mathrm{cuft}$
Inflow hyd. No.	$=5-$ Postdev to Detention BasinMax. Elevation	$=163.95 \mathrm{ft}$	
Reservoir name	$=$	Basin No. 1	Max. Storage

Storage Indication method used. Exfiltration extracted from Outflow.

DetentionBasin Outflow

Hyd. No. 8

Postdev to Intersection

Hydrograph type	$=$ Combine	Peak discharge	$=64.02 \mathrm{cfs}$
Storm frequency	$=50$ yrs	Time to peak	$=12.43 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=428,422 \mathrm{cuft}$
Inflow hyds.	$=4,6,7$	Contrib. drain. area	$=9.800 \mathrm{ac}$

Postdev to Intersection

Hydrograph Summary Report

 Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4| Hyd.
 No. | $\begin{aligned} & \text { Hydrograph } \\ & \text { type } \\ & \text { (origin) } \end{aligned}$ | Peak flow (cfs) | Time interval (min) | Time to Peak (min) | Hyd. volume (cuft) | Inflow
 hyd(s) | Maximum elevation (ft) | Total strge used (cuft) | Hydrograph
 Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SCS Runoff | 52.51 | 2 | 732 | 214,688 | ------ | ------ | ------ | Predev DA to Quarry Road |
| 2 | SCS Runoff | 68.27 | 2 | 734 | 296,529 | ------ | ------ | ------ | Predev DA to Dolington Road |
| 3 | Combine | 120.75 | 2 | 732 | 511,218 | 1, 2 | --- | ----- | Predev to Intersection |
| 4 | SCS Runoff | 24.55 | 2 | 736 | 113,531 | ------ | ----- | ------ | Postdev Bypass DA to Quarry Road |
| 5 | SCS Runoff | 97.50 | 2 | 734 | 441,899 | ------ | ------ | ------ | Postdev to Detention Basin |
| 6 | SCS Runoff | 4.364 | 2 | 728 | 16,126 | ------ | ------ | ------ | Postdev Bypass Flow to Dolington Ro |
| 7 | Reservoir | 56.99 | 2 | 754 | 422,212 | 5 | 164.42 | 124,298 | DetentionBasin Outflow |
| 8 | Combine | 78.49 | 2 | 740 | 551,870 | 4, 6, 7 | ------ | --- | Postdev to Intersection |
| 10 | Reservoir | 81.20 | 2 | 744 | 406,561 | 5 | 164.83 | 148,276 | Sediment Basin |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| Basin design.gpw | | | | | Return Period: 100 Year | | | Friday, 07 / 14 / 2017 | |

Hyd. No. 4

Postdev Bypass DA to Quarry Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=24.55 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=12.27 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=113,531 \mathrm{cuft}$
Drainage area	$=8.700$ ac	Curve number	$=60$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=35.80 \mathrm{~min}$
Total precip.	$=8.40$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hydrograph Report

Hyd. No. 5

Postdev to Detention Basin

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=97.50 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=12.23 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=441,899 \mathrm{cuft}$
Drainage area	$=25.600 \mathrm{ac}$	Curve number	$=70$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=36.30 \mathrm{~min}$
Total precip.	$=8.40$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 6

Postdev Bypass Flow to Dolington Road

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=4.364 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=12.13 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=16,126 \mathrm{cuft}$
Drainage area	$=1.100 \mathrm{ac}$	Curve number	$=64$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ TR55	Time of conc. (Tc)	$=24.90 \mathrm{~min}$
Total precip.	$=8.40 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 7

DetentionBasin Outflow

Hydrograph type	$=$ Reservoir	Peak discharge	$=56.99 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=12.57 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=422,212 \mathrm{cuft}$
Inflow hyd. No.	$=5-$ Postdev to Detention BasinMax. Elevation	$=164.42 \mathrm{ft}$	
Reservoir name	$=$	Basin No. 1	

Storage Indication method used. Exfiltration extracted from Outflow.

DetentionBasin Outflow
Hyd. No. 7 -- 100 Year

Hyd No. 7
\square Total storage used $=124,298$ cuft

Q (cfs)
100.00 90.00 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00

Time (hrs)

Hyd. No. 8

Postdev to Intersection

Hydrograph type	$=$ Combine	Peak discharge	$=78.49 \mathrm{cfs}$
Storm frequency	$=100 \mathrm{yrs}$	Time to peak	$=12.33 \mathrm{hrs}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=551,870 \mathrm{cuft}$
Inflow hyds.	$=4,6,7$	Contrib. drain. area	$=9.800 \mathrm{ac}$

Watershed Model Schematic. 1
Hydrograph Return Period Recap 2
1 - Year
Summary Report. 3
Hydrograph Reports 4
Hydrograph No. 4, SCS Runoff, Postdev Bypass DA to Quarry Road. 4
TR-55 Tc Worksheet 5
Hydrograph No. 5, SCS Runoff, Postdev to Detention Basin 6
TR-55 Tc Worksheet 7
Hydrograph No. 6, SCS Runoff, Postdev Bypass Flow to Dolington Road 8
TR-55 Tc Worksheet 9
Hydrograph No. 7, Reservoir, DetentionBasin Outflow. 10
Pond Report - Basin No. 1 11
Hydrograph No. 8, Combine, Postdev to Intersection. 12
2 - Year
Summary Report. 13
Hydrograph Reports 14
Hydrograph No. 4, SCS Runoff, Postdev Bypass DA to Quarry Road. 14
Hydrograph No. 5, SCS Runoff, Postdev to Detention Basin. 15
Hydrograph No. 6, SCS Runoff, Postdev Bypass Flow to Dolington Road 16
Hydrograph No. 7, Reservoir, DetentionBasin Outflow. 17
Hydrograph No. 8, Combine, Postdev to Intersection. 18
5 - Year
Summary Report. 19
Hydrograph Reports 20
Hydrograph No. 4, SCS Runoff, Postdev Bypass DA to Quarry Road. 20
Hydrograph No. 5, SCS Runoff, Postdev to Detention Basin. 21
Hydrograph No. 6, SCS Runoff, Postdev Bypass Flow to Dolington Road 22
Hydrograph No. 7, Reservoir, DetentionBasin Outflow. 23
Hydrograph No. 8, Combine, Postdev to Intersection. 24
10 - Year
Summary Report. 25
Hydrograph Reports. 26
Hydrograph No. 4, SCS Runoff, Postdev Bypass DA to Quarry Road. 26
Hydrograph No. 5, SCS Runoff, Postdev to Detention Basin. 27
Hydrograph No. 6, SCS Runoff, Postdev Bypass Flow to Dolington Road. 28
Hydrograph No. 7, Reservoir, DetentionBasin Outflow. 29
Hydrograph No. 8, Combine, Postdev to Intersection. 30
25 - Year
Summary Report 31
Hydrograph Reports 32
Hydrograph No. 4, SCS Runoff, Postdev Bypass DA to Quarry Road. 32
Hydrograph No. 5, SCS Runoff, Postdev to Detention Basin 33
Hydrograph No. 6, SCS Runoff, Postdev Bypass Flow to Dolington Road 34
Hydrograph No. 7, Reservoir, DetentionBasin Outflow. 35
Hydrograph No. 8, Combine, Postdev to Intersection 36
50 - Year
Summary Report 37
Hydrograph Reports 38
Hydrograph No. 4, SCS Runoff, Postdev Bypass DA to Quarry Road. 38
Hydrograph No. 5, SCS Runoff, Postdev to Detention Basin 39
Hydrograph No. 6, SCS Runoff, Postdev Bypass Flow to Dolington Road 40
Hydrograph No. 7, Reservoir, DetentionBasin Outflow. 41
Hydrograph No. 8, Combine, Postdev to Intersection 42
100 - Year
Summary Report 43
Hydrograph Reports 44
Hydrograph No. 4, SCS Runoff, Postdev Bypass DA to Quarry Road. 44
Hydrograph No. 5, SCS Runoff, Postdev to Detention Basin 45
Hydrograph No. 6, SCS Runoff, Postdev Bypass Flow to Dolington Road 46
Hydrograph No. 7, Reservoir, DetentionBasin Outflow. 47
Hydrograph No. 8, Combine, Postdev to Intersection 48

APPENDIX D:

STORM SEWER

RIPRAP

DESIGN CALCULATIONS

STANDARD E\&S WORKSHEET \# 20

Riprap Apron Outlet Protection

PROJECT NAME: Snipes Tract Athletic Fields
LOCATION: Dolington Road and Quarry Road, Lower Makefield Township, Bucks County, PA

PREPARED BY: Maryellen Saylor, P.E.
CHECKED BY: Mark Eisold, P.E.

DATE: November 18, 2016, Revised June 7, 2017
DATE: November 18, 2016, Revised June 7, 2017

PLAN VIEW

SECTION A - A

NO.	PIPE DIA. Do (in.)	TAIL WATER COND. (Max or Min)	MAN. "n" FOR PIPE	PIPE SLOPE (FT/FT)	$\begin{gathered} \mathbf{Q} \\ \text { (CFS) } \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{V}^{*} \\ \text { (FPS) } \end{gathered}$	RIPRAP SIZE	Rt (in)	AI (ft)	Aiw (ft)	Atw (ft)
EW \#1	24"	Min.	0.011	0.0463	40.2	12.8	R-6	36"	22	6	22
EW \#2	18"	Min.	0.011	0.0100	12.7	7.0	R-4	18"	12	5	13
EW \#3	36"	Min.	0.012	0.0289	57.0	8.1	R-5	27"	20	9	24

[^0]

PROJECT : SNIPES TRACT
STORM PIPE COMPUTATION SHEET

Run			Drainage Area			Runoff				Pipe Data					Profile Data				
Locaton	From	To	A Area (acres)	C	CA	Time of Conc. (min.)		$\begin{gathered} \mathrm{Q} \\ \text { (cfs.) } \end{gathered}$	$\begin{gathered} \hline \text { Cum. } \\ \text { Q } \\ \text { (cfs) } \\ \hline \end{gathered}$	Pipe Size (in.)	Pipe Slope (ft/ft.)	n	$\begin{aligned} & \text { Pipe } \\ & \text { Cap. } \\ & \text { (cfs.) } \end{aligned}$	V Vel. $(\mathrm{ft} / \mathrm{sec})$.		Fall (ft.)	TG/Rim Elev.(up) (ft.)	Invert Up (ft.)	Invert Down (ft.)
Inlet	23	22	1.391	0.21	0.29	5.00	8.40	2.5	2.5	18	0.0051	0.011	8.9	5.0	35	0.18	186.50	183.85	183.67
Inlet	22	20	0.126	0.43	0.05	5.00	8.40	0.5	2.9	18	0.0100	0.011	12.4	7.0	309	3.10	187.50	183.50	180.40
Inlet	21	20	1.149	0.16	0.18	5.00	8.40	1.5	1.5	18	0.0061	0.011	9.6	5.5	66	0.40	181.90	178.90	178.50
Inlet	20	18	0.813	0.43	0.35	5.00	8.40	2.9	7.4	18	0.0099	0.011	12.3	7.0	313	3.10	183.15	177.00	173.90
Inlet	19	18	1.008	0.15	0.15	5.00	8.40	1.3	1.3	18	0.0050	0.011	8.7	5.0	70	0.35	177.00	174.25	173.90
Inlet	18	17	0.750	0.50	0.38	5.00	8.40	3.2	11.8	18	0.0095	0.011	12.0	6.8	95	0.90	176.70	173.70	172.80
Inlet	17	16	0.299	0.25	0.07	5.00	8.40	0.6	12.4	18	0.0163	0.011	15.8	8.9	202	3.30	176.70	172.60	169.30
Inlet	16	1	0.507	0.47	0.24	5.00	8.40	2.0	14.4	18	0.0171	0.011	16.2	9.2	35	0.60	172.50	169.10	168.50
Inlet	15	14	2.972	0.23	0.68	5.00	8.40	5.7	5.7	18	0.0087	0.011	11.5	6.5	264	2.30	186.60	183.60	181.30
Inlet	14	13	0.433	0.25	0.11	5.00	8.40	0.9	6.7	18	0.0661	0.011	31.8	18.0	28	1.85	185.50	181.10	179.25
Inlet	13	12	1.711	0.26	0.44	5.00	8.40	3.7	10.4	18	0.0089	0.011	11.7	6.6	263	2.35	182.00	179.05	176.70
Inlet	12	11	0.435	0.32	0.14	5.00	8.40	1.2	11.6	18	0.0321	0.011	22.2	12.5	39	1.25	181.00	176.00	174.75
Inlet	11	6	1.323	0.23	0.30	5.00	8.40	2.6	14.1	24	0.0060	0.011	20.6	6.6	251	1.50	177.50	174.25	172.75
Inlet	10	9	2.962	0.16	0.47	5.00	8.40	4.0	4.0	18	0.0050	0.011	8.7	5.0	87	0.45	177.50	174.90	174.45
Inlet	9	8	0.645	0.14	0.09	5.00	8.40	0.8	4.7	18	0.0050	0.011	8.7	5.0	100	0.50	177.94	174.25	173.75
Inlet	8	7	0.432	0.48	0.21	5.00	8.40	1.7	6.5	18	0.0050	0.011	8.7	5.0	62	0.31	177.51	173.55	173.24
Inlet	7	6	0.034	0.25	0.01	5.00	8.40	0.1	6.6	18	0.0051	0.011	8.8	5.0	57	0.29	176.67	173.04	172.75
Inlet	6	5	0.231	0.27	0.06	5.00	8.40	0.5	21.2	24	0.0063	0.011	21.1	6.7	78	0.49	176.97	172.75	172.26
Inlet	5	4	0.018	0.74	0.01	5.00	8.40	0.1	21.3	24	0.0064	0.011	21.4	6.8	103	0.66	175.23	172.06	171.40
Inlet	4	3	0.089	0.27	0.02	5.00	8.40	0.2	21.5	24	0.0066	0.011	21.7	6.9	100	0.66	175.50	171.20	170.54
Inlet*	3	2	0.131	0.33	0.04	5.00	8.40	0.4	21.9	24	0.0067	0.011	21.9	7.0	221	1.49	175.25	170.54	169.05
Inlet	2	1	0.712	0.58	0.41	5.00	8.40	3.5	25.3	24	0.0225	0.011	40.1	12.7	51	1.15	172.60	169.15	168.00
Inlet	1	EW1	0.224	0.24	0.05	5.00	8.40	0.5	40.2	24	0.0463	0.011	57.4	18.3	54	2.50	172.50	167.50	165.00
Inlet	28	27	1.423	0.23	0.33	5.00	8.40	2.7	2.7	18	0.0144	0.011	14.9	8.4	260	3.75	175.50	172.75	169.00
Inlet*	27	26	2.273	0.18	0.41	5.00	8.40	3.4	6.2	18	0.0103	0.011	12.6	7.1	150	1.55	171.80	168.80	167.25
Inlet*	26	EW2	0.770	0.28	0.22	5.00	8.40	1.8	8.0	18	0.0090	0.011	11.7	6.6	50	0.45	170.00	167.05	166.60
Inlet	25	24	0.130	0.69	0.09	5.00	8.40	0.8	0.8	18	0.0194	0.011	17.2	9.8	35	0.68	164.00	161.00	160.32

* Infiltration Trench

APPENDIX E:

INFILTRATION/GEOTECHNICAL REPORT

SOIL INFILTRATION TEST PIT RESULTS

AbB-Abbottstown silt loam, $\mathbf{3}$ to $\mathbf{8}$ percent slopes

Map Unit Setting

- National map unit symbol: 17n4
- Elevation: 200 to 1,300 feet
- Mean annual precipitation: 36 to 50 inches
- Mean annual air temperature: 46 to 57 degrees F
- Frost-free period: 130 to 200 days
- Farmland classification: Farmland of statewide importance Map Unit Composition
- Abbottstown and similar soils: 88 percent
- Minor components: 12 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Abbottstown

Setting

- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, toeslope
- Landform position (three-dimensional): Base slope, head slope
- Down-slope shape: Concave, linear
- Across-slope shape: Linear, concave
- Parent material: Acid reddish brown residuum weathered from shale and siltstone

Typical profile

- $A p-0$ to 10 inches: silt loam
- Bt - 10 to 20 inches: silt loam
- $B x-20$ to 39 inches: channery loam
- $B C g-39$ to 48 inches: channery silt loam
- $\quad R-48$ to 49 inches: bedrock

Properties and qualities

- Slope: 3 to 8 percent
- Depth to restrictive feature: 15 to 30 inches to fragipan; 40 to 60 inches to lithic bedrock
- Natural drainage class: Somewhat poorly drained
- Runoff class: Very high
- Capacity of the most limiting layer to transmit water
(Ksat): Moderately low to moderately high (0.06 to $0.20 \mathrm{in} / \mathrm{hr}$)
- Depth to water table: About 6 to 18 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Low (about 3.7 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 3w
- Hydrologic Soil Group: D
- Hydric soil rating: No

Minor Components

Penn

- Percent of map unit: 5 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Summit, shoulder, backslope
- Landform position (three-dimensional): Interfluve, side slope, nose slope
- Down-slope shape: Linear, convex
- Across-slope shape: Linear, convex
- Hydric soil rating: No

Croton

- Percent of map unit: 5 percent
- Landform: Depressions
- Landform position (two-dimensional): Toeslope
- Landform position (three-dimensional): Base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: Yes

Klinesville

- Percent of map unit: 2 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Shoulder, summit
- Landform position (three-dimensional): Interfluve, nose slope
- Down-slope shape: Convex
- Across-slope shape: Convex
- Hydric soil rating: No

BwB-Buckingham silt loam, 3 to 8 percent slopes

Map Unit Setting

- National map unit symbol: 17nv
- Elevation: 150 to 900 feet
- Mean annual precipitation: 38 to 48 inches
- Mean annual air temperature: 45 to 57 degrees F
- Frost-free period: 150 to 210 days
- Farmland classification: Farmland of statewide importance

Map Unit Composition

- Buckingham and similar soils: 88 percent
- Minor components: 12 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Buckingham

Setting

- Landform: Drainageways
- Landform position (two-dimensional): Toeslope
- Landform position (three-dimensional): Head slope
- Down-slope shape: Concave, linear
- Across-slope shape: Concave, linear
- Parent material: Fine-loamy colluvium and old alluvium derived from shale and siltstone
Typical profile
- A - 0 to 7 inches: silt loam
- Bt - 7 to 30 inches: silt loam
- Btx1-30 to 44 inches: silty clay loam
- Btx2-44 to 70 inches: gravelly silt loam

Properties and qualities

- Slope: 3 to 8 percent
- Depth to restrictive feature: 20 to 40 inches to fragipan; 80 to 99 inches to lithic bedrock
- Natural drainage class: Somewhat poorly drained
- Runoff class: Very high
- Capacity of the most limiting layer to transmit water
(Ksat): Moderately low to moderately high (0.06 to $0.60 \mathrm{in} / \mathrm{hr}$)
- Depth to water table: About 6 to 18 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Low (about 5.5 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 3w
- Hydrologic Soil Group: C/D
- Hydric soil rating: No

Minor Components

Bowmansville

- Percent of map unit: 8 percent
- Landform: Flood plains
- Landform position (two-dimensional): Footslope, toeslope
- Landform position (three-dimensional): Head slope
- Down-slope shape: Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: No

Knauers

- Percent of map unit: 2 percent
- Landform: Flood plains
- Landform position (two-dimensional): Toeslope, footslope
- Landform position (three-dimensional): Tread
- Down-slope shape: Linear, concave
- Across-slope shape: Linear, concave
- Hydric soil rating: Yes

Croton

- Percent of map unit: 2 percent
- Landform: Depressions
- Landform position (two-dimensional): Toeslope
- Landform position (three-dimensional): Base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: Yes

FoB-Fountainville silt loam, $\mathbf{3}$ to $\mathbf{8}$ percent slopes

Map Unit Setting

- National map unit symbol: 17pr
- Elevation: 250 to 1,000 feet
- Mean annual precipitation: 38 to 48 inches
- Mean annual air temperature: 45 to 63 degrees F
- Frost-free period: 155 to 200 days
- Farmland classification: All areas are prime farmland Map Unit Composition
- Fountainville and similar soils: 90 percent
- Minor components: 7 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Fountainville

Setting

- Landform: Hills
- Landform position (two-dimensional): Backslope, summit
- Landform position (three-dimensional): Interfluve
- Down-slope shape: Linear, convex
- Across-slope shape: Linear, convex

Typical profile

- $A p-0$ to 8 inches: silt loam
- Bt - 8 to 22 inches: silt loam
- 2Btx - 22 to 46 inches: channery silt loam
- $\quad R-46$ to 56 inches: bedrock

Properties and qualities

- Slope: 3 to 8 percent
- Depth to restrictive feature: 20 to 40 inches to fragipan; 40 to 60 inches to lithic bedrock
- Natural drainage class: Moderately well drained
- Runoff class: Medium
- Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to $0.20 \mathrm{in} / \mathrm{hr}$)
- Depth to water table: About 18 to 30 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Low (about 4.0 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 2e
- Hydrologic Soil Group: c
- Hydric soil rating: No

Minor Components

Penn

- Percent of map unit: 5 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Shoulder, backslope
- Landform position (three-dimensional): Side slope, nose slope
- Down-slope shape: Linear, convex
- Across-slope shape: Convex, linear
- Hydric soil rating: No

Doylestown

- Percent of map unit: 1 percent
- Landform: Drainageways
- Landform position (two-dimensional): Toeslope, footslope, backslope
- Landform position (three-dimensional): Head slope
- Down-slope shape: Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: Yes

Abbottstown

- Percent of map unit: 1 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, toeslope
- Hydric soil rating: No

PnB-Penn-Lansdale complex, 3 to 8 percent slopes
 \section*{Map Unit Setting}

- National map unit symbol: 17rv
- Elevation: 250 to 950 feet
- Mean annual precipitation: 36 to 50 inches
- Mean annual air temperature: 46 to 57 degrees F
- Frost-free period: 160 to 200 days
- Farmland classification: All areas are prime farmland Map Unit Composition
- Penn and similar soils: 69 percent
- Lansdale and similar soils: 25 percent
- Minor components: 6 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Penn

Setting

- Landform: Hillslopes
- Landform position (two-dimensional): Shoulder, backslope
- Landform position (three-dimensional): Side slope, nose slope
- Down-slope shape: Linear, convex
- Across-slope shape: Convex, linear
- Parent material: Residuum weathered from shale and siltstone Typical profile
- $A p-0$ to 10 inches: channery silt loam
- Bt - 10 to 22 inches: channery silt loam
- C-22 to 28 inches: very channery silt loam
- $\quad R-28$ to 48 inches: bedrock

Properties and qualities

- Slope: 3 to 8 percent
- Depth to restrictive feature: 20 to 40 inches to lithic bedrock
- Natural drainage class: Well drained
- Runoff class: Low
- Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to $6.00 \mathrm{in} / \mathrm{hr}$)
- Depth to water table: More than 80 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Low (about 4.1 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 2e
- Hydrologic Soil Group: B
- Hydric soil rating: No

Description of Lansdale

Setting

- Landform: Hillsides
- Landform position (two-dimensional): Summit, shoulder, backslope
- Landform position (three-dimensional): Side slope
- Down-slope shape: Convex
- Across-slope shape: Convex
- Parent material: Residuum weathered from sandstone and/or residuum weathered from conglomerate

Typical profile

- Ap - 0 to 10 inches: channery loam
- Bt - 10 to 30 inches: sandy loam
- C - 30 to 47 inches: channery loamy sand
- $R-47$ to 57 inches: bedrock

Properties and qualities

- Slope: 3 to 8 percent
- Depth to restrictive feature: 42 to 60 inches to lithic bedrock
- Natural drainage class: Well drained
- Runoff class: Medium
- Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to $0.60 \mathrm{in} / \mathrm{hr}$)
- Depth to water table: More than 80 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Low (about 5.6 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 2e
- Hydrologic Soil Group: в
- Hydric soil rating: No

Minor Components

Readington

- Percent of map unit: 6 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, backslope
- Landform position (three-dimensional): Base slope, head slope, side slope
- Down-slope shape: Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

UdB-Udorthents, shale and sandstone

Map Unit Setting

- National map unit symbol: 17 sm
- Elevation: 200 to 1,500 feet
- Mean annual precipitation: 36 to 55 inches
- Mean annual air temperature: 45 to 57 degrees F
- Frost-free period: 160 to 214 days
- Farmland classification: Not prime farmland

Map Unit Composition

- Udorthents, shale and sandstone, and similar soils: 85 percent
- Minor components: 15 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Udorthents, Shale And Sandstone

Setting

- Landform: Ridges
- Landform position (two-dimensional): Summit, shoulder, backslope
- Landform position (three-dimensional): Interfluve, side slope, nose slope
- Down-slope shape: Convex, linear
- Across-slope shape: Convex, linear
- Parent material: Graded areas of shale and siltstone; graded areas of sandstone and shale
Typical profile
- Ap - 0 to 6 inches: silt loam
- $C-6$ to 60 inches: silt loam

Properties and qualities

- Slope: 0 to 8 percent
- Depth to restrictive feature: 20 to 99 inches to lithic bedrock
- Natural drainage class: Well drained
- Runoff class: Very high
- Capacity of the most limiting layer to transmit water
(Ksat): Moderately low to high (0.06 to $6.00 \mathrm{in} / \mathrm{hr}$)
- Depth to water table: About 60 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Very low (about 2.9 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 7s
- Hydrologic Soil Group: A
- Hydric soil rating: No

Minor Components

Penn

- Percent of map unit: 5 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Shoulder, backslope
- Landform position (three-dimensional): Side slope, nose slope
- Down-slope shape: Linear, convex
- Across-slope shape: Convex, linear
- Hydric soil rating: No

Abbottstown

- Percent of map unit: 2 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, toeslope
- Landform position (three-dimensional): Base slope, head slope
- Down-slope shape: Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

Readington

- Percent of map unit: 2 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, backslope
- Landform position (three-dimensional): Base slope, head slope, side slope
- Down-slope shape: Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

Reaville

- Percent of map unit: 2 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, summit
- Landform position (three-dimensional): Interfluve, base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

Bowmansville

- Percent of map unit: 2 percent
- Landform: Flood plains
- Landform position (two-dimensional): Footslope, toeslope
- Landform position (three-dimensional): Head slope
- Down-slope shape: Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: No

Berks

- Percent of map unit: 1 percent
- Landform: Ridges, valleys
- Landform position (two-dimensional): Backslope
- Landform position (three-dimensional): Side slope
- Down-slope shape: Convex, linear
- Across-slope shape: Convex, linear
- Hydric soil rating: No

Croton

- Percent of map unit: 1 percent
- Landform: Depressions
- Landform position (two-dimensional): Toeslope
- Landform position (three-dimensional): Base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: Yes

UrB-Urban land-Lansdale complex, 0 to 8 percent slopes

Map Unit Setting

- National map unit symbol: 17t1
- Mean annual precipitation: 40 to 48 inches
- Mean annual air temperature: 48 to 57 degrees F
- Frost-free period: 160 to 215 days
- Farmland classification: Not prime farmland Map Unit Composition
- Urban land: 65 percent
- Lansdale and similar soils: 25 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Urban Land

Setting

- Down-slope shape: Linear
- Across-slope shape: Linear
- Parent material: Pavement, buildings and other artifically covered areas Typical profile
- H1-0 to 6 inches: variable

Properties and qualities

- Slope: 0 to 8 percent
- Depth to restrictive feature: 10 to 99 inches to lithic bedrock
- Runoff class: Very high
- Available water storage in profile: Very low (about 0.0 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 8s
- Hydric soil rating: No

Description of Lansdale

Setting

- Landform: Hillsides
- Landform position (two-dimensional): Summit, shoulder, backslope
- Landform position (three-dimensional): Side slope
- Down-slope shape: Convex
- Across-slope shape: Convex
- Parent material: Residuum weathered from sandstone and/or residuum weathered from conglomerate

Typical profile

- Ap - 0 to 10 inches: loam
- $B-10$ to 38 inches: loam
- C - 38 to 55 inches: loamy sand
- $R-55$ to 60 inches: bedrock

Properties and qualities

- Slope: 0 to 8 percent
- Depth to restrictive feature: 42 to 99 inches to lithic bedrock
- Natural drainage class: Well drained
- Runoff class: Low
- Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to $0.60 \mathrm{in} / \mathrm{hr}$)
- Depth to water table: More than 80 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Moderate (about 6.7 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 2e
- Hydrologic Soil Group: в
- Hydric soil rating: No

UxB-Urban land-Penn complex, 0 to 8 percent slopes

Map Unit Setting

- National map unit symbol: 17t9
- Elevation: 200 to 1,000 feet
- Mean annual precipitation: 36 to 55 inches
- Mean annual air temperature: 46 to 57 degrees F
- Frost-free period: 160 to 215 days
- Farmland classification: Not prime farmland Map Unit Composition
- Urban land: 65 percent
- Penn and similar soils: 25 percent
- Minor components: 10 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Urban Land

Setting

- Landform: Hills
- Down-slope shape: Linear
- Across-slope shape: Linear
- Parent material: Pavement, buildings and other artifically covered areas Typical profile
- C - 0 to 6 inches: variable

Properties and qualities

- Slope: 0 to 8 percent
- Depth to restrictive feature: 10 to 100 inches to lithic bedrock
- Available water storage in profile: Very low (about 0.0 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 8s
- Hydric soil rating: No

Description of Penn

Setting

- Landform: Hillslopes
- Landform position (two-dimensional): Shoulder, backslope
- Landform position (three-dimensional): Side slope, nose slope
- Down-slope shape: Linear, convex
- Across-slope shape: Convex, linear
- Parent material: Residuum weathered from shale and siltstone Typical profile
- Ap - 0 to 8 inches: channery silt loam
- $B t-8$ to 21 inches: channery silt loam
- C-21 to 34 inches: very channery silt loam
- $\quad R-34$ to 44 inches: bedrock

Properties and qualities

- Slope: 0 to 8 percent
- Depth to restrictive feature: 20 to 40 inches to lithic bedrock
- Natural drainage class: Well drained
- Runoff class: Very low
- Capacity of the most limiting layer to transmit water
(Ksat): Moderately high to high (0.20 to $6.00 \mathrm{in} / \mathrm{hr}$)
- Depth to water table: More than 80 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Low (about 4.1 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 2e
- Hydrologic Soil Group: B
- Hydric soil rating: No

Minor Components

Readington

- Percent of map unit: 4 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, backslope
- Landform position (three-dimensional): Base slope, head slope, side slope
- Down-slope shape: Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

Croton

- Percent of map unit: 4 percent
- Landform: Depressions
- Landform position (two-dimensional): Toeslope
- Landform position (three-dimensional): Base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: Yes

Reaville

- Percent of map unit: 2 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, summit
- Landform position (three-dimensional): Interfluve, base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

UxD-Urban land-Penn complex, 8 to 25 percent slopes

Map Unit Setting

- National map unit symbol: 17tb
- Elevation: 200 to 1,000 feet
- Mean annual precipitation: 36 to 55 inches
- Mean annual air temperature: 44 to 57 degrees F
- Frost-free period: 130 to 200 days
- Farmland classification: Not prime farmland Map Unit Composition
- Urban land: 65 percent
- Penn and similar soils: 25 percent
- Minor components: 10 percent
- Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Urban Land

Setting

- Landform: Hills
- Down-slope shape: Linear
- Across-slope shape: Linear
- Parent material: Pavement, buildings and other artifically covered areas Typical profile
- C - 0 to 6 inches: variable

Properties and qualities

- Slope: 8 to 25 percent
- Depth to restrictive feature: 10 to 79 inches to lithic bedrock
- Available water storage in profile: Very low (about 0.0 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 8s
- Hydric soil rating: No

Description of Penn

Setting

- Landform: Hillslopes
- Landform position (two-dimensional): Shoulder, backslope
- Landform position (three-dimensional): Side slope, nose slope
- Down-slope shape: Linear, convex
- Across-slope shape: Convex, linear
- Parent material: Residuum weathered from shale and siltstone Typical profile
- Ap - 0 to 8 inches: channery silt loam
- Bt - 8 to 21 inches: channery silt loam
- C-21 to 34 inches: very channery silt loam
- $\quad R-34$ to 44 inches: bedrock

Properties and qualities

- Slope: 8 to 25 percent
- Depth to restrictive feature: 20 to 40 inches to lithic bedrock
- Natural drainage class: Well drained
- Runoff class: Low
- Capacity of the most limiting layer to transmit water
(Ksat): Moderately high to high (0.20 to $6.00 \mathrm{in} / \mathrm{hr}$)
- Depth to water table: More than 80 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Available water storage in profile: Low (about 4.1 inches)

Interpretive groups

- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 4e
- Hydrologic Soil Group: в
- Hydric soil rating: No

Minor Components

Croton

- Percent of map unit: 4 percent
- Landform: Depressions
- Landform position (two-dimensional): Toeslope
- Landform position (three-dimensional): Base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Linear, concave
- Hydric soil rating: Yes

Readington

- Percent of map unit: 4 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, backslope
- Landform position (three-dimensional): Base slope, head slope, side slope
- Down-slope shape: Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

Reaville

- Percent of map unit: 2 percent
- Landform: Hillslopes
- Landform position (two-dimensional): Footslope, summit
- Landform position (three-dimensional): Interfluve, base slope
- Down-slope shape: Concave, linear
- Across-slope shape: Concave, linear
- Hydric soil rating: No

INFILTRATION REPORT
 FOR THE
 SNIPES SITE

Block and Lot: 016-002

Lower Makefield Township, Bucks County, Pennsylvania

November 1, 2016 (Revised May 11, 2017)
Prepared for:
Lower Makefield Township
1100 Edgewood Road
Yardley, PA 19067

Boucher \& James, Inc.

CONSULTINGENGINEERS

Corporate Headquarters:
1456 Ferry Road, Building 500
Doylestown, PA 18901
(215) 345-9400

Regional Office:
2738 Rimrock Drive
Stroudsburg, PA 18360
(570) 629-0300

Regional Office:
559 Main Street, Suite 230
Bethlehem, PA 18018
(610) 419-9407

PROJECT OBJECTIVE AND SCOPE OF WORK PUBLISHED GEOLOGICAL / SOILS INFORMATION FIELD INVESTIGATION, OBSERVATIONS AND DATA

APPENDIX I - TEST PIT LOCATION PLAN
APPENDIX II - DOUBLE RING INFILTROMETER TEST RESULTS
APPENDIX III - NRCS SOIL INFORMATION

PROJECT OBJECTIVE AND SCOPE OF WORK

Boucher \& James, Inc. has completed the geotechnical investigation for the Snipes Tract located in Lower Makefield Township, Bucks County, Pennsylvania. The investigation involved evaluation of the subsurface soil conditions for stormwater infiltration.

The scope of work included performing test pits in areas proposed for stormwater infiltration. Soils profiles were examined and described using standard nomenclature including Munsell color charts. Test pits were dug typically to a minimum depth of six feet from the soil surface or until refusal at bedrock. Following examination of the soils, infiltration testing at representative locations was conducted. The infiltration testing was performed using double ring infiltrometers and percolation tests. Methods described in the Standard Test Method for Infiltration Rate of Soils in Field Using Double-Ring Infiltrometer (ASTM D 3385-03), as referenced in Appendix C of the Pennsylvania Stormwater Best Management Practices Manual (BMP Manual), as well as percolation testing directly described in the BMP Manual were utilized to conduct the testing.

PUBLISHED GEOLOGIC / SOILS INFORMATION

According to the Geologic Map of Bucks County, Pennsylvania (1950) the site is situated within an area underlain by the Triassic Period Stockton Formation. The excavations appear to confirm the presence of the Stockton Formation bedrock which typically consists of medium to coarse grained sandstone, siltstone and mudstone with interbedded shale. The Stockton Formation does not consist of Karst or carbonate geology. No sinkhole evidence was noted on the site.

According to the USDA Natural Resources Conservation Service Web Soil Survey, soils on site in the area of the test pits consist of the Penn - Lansdale Complex. These soils are described as well drained with water tables at more than eighty inches from the soil surface. Bedrock is typically encountered between twenty-eight and forty-eight inches from the soil surface. Examination of the test pits appears to generally match with the published soils data.

FIELD INVESTIGATION, OBSERVATIONS AND DATA

On October $14^{\text {th }}$ and $26^{\text {th }}, 2016$ and May $10^{\text {th }} 2017$, nineteen test pits were performed on the site. Pits were dug at the locations shown on the plan in Appendix I. The pit locations corresponded to potential infiltration areas associated with stormwater facilities. Topsoil depths at the test pits ranged between seven and ten inches thick.

Overall soils varied in composition throughout the test areas. Mottling was noted in only one test pit, near the soil surface, and appeared to be due to soil compaction. Bedrock was encountered in a third of the test pits at depths between twenty and ninety-six from the soil surface.

The soil examinations and testing revealed variable soils across the site which resulted in a wide range of infiltration rates, from limited to good infiltration capacity. Additional measures, such as modified soils as described in the BMP manual, should be considered for infiltration rates exceeding six inches per hour. The test pit soil descriptions and infiltration test results are included in Appendix II.

APPENDIX I

APPENDIX II

APPENDIX III

SITE INVESTIGATION AND PERCOLATION TEST REPORT FOR STORMWATER INFILTRATION

Site Location: Snipes Tract

Municipality: Lower Makefield
County: Bucks
Soil Type: PnB

Soil Description:
Soil Description Completed by: Terry Harris, SEO \#02596

Date: October 14, 2017

Test Pit \# A Additional Pits

Inches		
0	то	8
8	то	33
33	TO	80
80	то	
	TO	
	то	

Description of Horizon

A, 10YR4/3, SIL, VFR, GR
B1, 10YR5/8, SIL, FR, SBK
B2, 5YR3/3, SIL, VFI, SBK
BEDROCK

Percolation Test:
Percolation Test Completed by: James Haklar \quad Date: May 10, 2017

Test depth below existing grade: 5 Feet

Weather Conditions: Soil Conditions:		Below 40 F		$\mathbf{x} 40 \mathrm{~F}$ or above		\mathbf{X} Dry	Rain, Sleet, Snow (last 24 hours)				
		Wet			Frozen		24 Hour	Presoak	Yes \mathbf{X}	No	
Hole No.	Yes	No	Reading Interval	Reading No. 1: Inches of Drop	Reading No. 2: Inches of Drop	Reading No. 3: Inches of Drop	Reading No. 4: Inches of Drop	Reading No. 5: Inches of Drop	Reading No. 6: Inches of Drop	Reading No. 7: Inches of Drop	Reading No. 8: Inches of Drop
1	X		XX / 30	0.125	0.125	0.125	0.125				
2	X		XX/30	0.125	0.125	0.125	0.125				
3	X		XX/30	0.125	0.125	0.125	0.125				

${ }^{* * *}$ Water remaining in the hole at the end of the final 30 minute presoak? Yes, use 30 minute interval; No use 10 minute interval

Total of Minutes / Inch:	720.00
Total Number of Holes:	3

SITE INVESTIGATION AND PERCOLATION TEST REPORT FOR STORMWATER INFILTRATION

Site Location: Snipes Tract

Municipality: Lower Makefield
County: Bucks
Soil Type: PnB

Soil Description:
Soil Description Completed by: Terry Harris, SEO \#02596

Date: October 14, 2017

Test Pit \# B Additional Pits
Inches Description of Horizon

| 0 TO
 8 TO
 32 TO
 70 TO
 TO

 TO
 | |
| :---: | :---: | :---: |

A, 10YR4/3, SIL, VFR, GR
B1, 10YR5/8, SIL, FR, SBK
B2, 5YR3/3, SIL, VFI, SBK
BEDROCK
\qquad

Percolation Test:
Percolation Test Completed by: James Haklar Date: May 10, 2017

Test depth below existing grade: 5 Feet

Weather Conditions: Soil Conditions:		Below 40 F		40 F or above		\mathbf{X} Dry	Rain, Sleet, Snow (last 24 hours)					
		Wet	\mathbf{X} D			24 Hou	resoak	Yes $\quad \mathbf{X}$	No			
Hole No.	Yes	No	Reading Interval	Reading No. 1: Inches of Drop	Reading No. 2: Inches of Drop		Reading No. 3: Inches of Drop	Reading No. 4: Inches of Drop	Reading No. 5: Inches of Drop	Reading No. 6: Inches of Drop	Reading No. 7: Inches of Drop	Reading No. 8 : Inches of Drop
1	x		XX / 30	2.500	2.500	2.375	2.250					
2	X		XX / 30	4.500	4.500	4.375	4.250					
3	x		XX / 30	2.625	2.750	2.625	2.500					

${ }^{* * *}$ Water remaining in the hole at the end of the final 30 minute presoak? Yes, use 30 minute interval; No use 10 minute interval

Hole No.	Drop during final period	Perc. Rate as Minutes / Inch	Depth of Hole	"	Infiltration Rate (Reduction Factor from BMP Manual Applied)	
1	2.250	13.33	12			
2*	4.250	7.06	12	"	12.67	Percolation Rate (minutes / inch)
3	2.500	12.00	12	"	6.00	Initial Water Depth (Inches)
					2.375	Average / Final Water Level Drop (Inches)
					8.00	Diameter of Percolation Holes (Inches)

Total of Minutes / Inch:	25.33
Total Number of Holes:	2

[^1]| Site Name: | Snipes Tract - Lower Makefield Township |
| :--- | :--- |
| Pit \#/ Location: | C |

Pit \# Location: C

Personnel:
Infiltration Date:
Personnel:

Mr. Terry Harris
October 26, 2016
Mr. James Haklar

Head or Depth of Water (H):	6 Inches
Outer Ring Diameter:	12 Inches
Inner Ring Diameter:	8 Inches
Depth of Test Below Grade:	48 Inches
Soil Description:	Soil Type: PnB

\qquad
T
TO
TO \qquad A, 10YR4/3, SIL, VFR, GR
B1, 10YR5/8, SIL, FR, SBK
B2, 2.5YR5/3, SL, VFR, GR
то

$$
0
$$

TO
\qquad
\qquad
\qquad
O
\qquad
\qquad

\qquad

INNER RING READINGS

INFILTRATION TEST 1

Lapse (Minutes)	Volume Added (ml)	Rate (I) $(\mathrm{ml} / \mathrm{min})$	Infiltration Rate (I) (inches $/ \mathrm{min})$

$10 / 26 / 16$	$10: 35 \mathrm{AM}$
$10 / 26 / 16$	$10: 50 \mathrm{AM}$
$10 / 26 / 16$	$11: 05 \mathrm{AM}$
$10 / 26 / 16$	$11: 20 \mathrm{AM}$
$10 / 26 / 16$	$11: 35 \mathrm{AM}$

---	---	---	---
15	2,100	140.0	0.174
15	2,000	133.3	0.166
15	2,000	133.3	0.166
15	1,930	128.7	0.160

INFILTRATION TEST 2

Lapse (Minutes)	Volume Added (ml)	Rate (I) $(\mathrm{ml} / \mathrm{min})$	Infiltration Rate (I) (inches/min)

---	---	---	---
15	2,600	173.3	0.215
15	2,350	156.7	0.195
15	2,000	133.3	0.166
15	1,960	130.7	0.162
15	1,250	83.3	0.104
15	1,300	86.7	0.108
15	1,250	83.3	0.104
15	1,240	82.7	0.103

TEST 1 INFILTRATION RATE
$\begin{array}{lr}\text { Inches per minute } & 0.16 \\ \text { Inches per hour } & 9.60 \\ \text { Inches per day } & 230.30\end{array}$

TEST 2 INFILTRATION RATE
Inches per minute
0.10

Inches per hour
Inches per day
47.97

Site Name: \quad Snipes Tract - Lower Makefield Township
Pit \# / Location: D
Date Soil Described: October 14, 2016
Personnel:
Infiltration Date:
Personnel:

Mr. Terry Harris
October 26, 2016
Mr. James Haklar

Head or Depth of Water (H):	6 Inches
Outer Ring Diameter:	12 Inches
Inner Ring Diameter:	8 Inches
Depth of Test Below Grade:	48 Inches
Soil Description:	Soil Type: PnB

\qquad $\begin{array}{r}\text { TO } \\ - \\ \text { TO } \\ \hline\end{array}$ \qquad A, 10YR4/3, SIL, VFR, GR
B1, 10YR5/8, SIL, FR, SBK
B2, 2.5YR5/3, CBSL, VFR, GR

- TO

$$
\square
$$

\qquad
\qquad TO \qquad
TO
\qquad
\qquad
\qquad
\qquad
\qquad

INNER RING READINGS

Date	Time	Lapse (Minutes)	Volume Added (ml)	Rate (I) ($\mathrm{ml} / \mathrm{min}$)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) ($\mathrm{ml} / \mathrm{min}$)	Infiltration Rate (I) (inches/min)
10/26/16	10:40 AM	---	---	---	---	---	---	---	---
10/26/16	10:55 AM	15	4,000	266.7	0.331	15	3,420	228.0	0.283
10/26/16	11:10 AM	15	4,000	266.7	0.331	15	3,430	228.7	0.284
10/26/16	11:25 AM	15	4,000	266.7	0.331	15	3,400	226.7	0.282
10/26/16	11:40 AM	15	4,000	266.7	0.331	15	3,420	228.0	0.283

TEST 1 INFILTRATION RATE
Inches per minut
0.33

Inches per hour 19.89
Inches per day 477.31

TEST 2 INFILTRATION RATE
Inches per minute
Inches per hour
Inches per day

\qquad
\qquad A, 10YR4/3, SIL, VFR, GR
B1, 10YR5/8, SIL, FR, SBK
B2,5YR4/6, SL, VFR, GR
B3, 2.5YR5/3, SL, VFR, GR
TO \qquad
то \qquad
\qquad

Site Name:
Snipes Tract - Lower Makefield Township
Pit \# / Location: E
Date Soil Described: October 14, 2016
Personnel:
Infiltration Date:
Personnel:

Mr. Terry Harris
October 26, 2016
Mr. James Haklar
Site Name: \quad Snipes Tract - Lower Makefield Township
\#location.

Mr. James Haklar

INNER RING READINGS

		INFILTRATION TEST 1				INFILTRATION TEST 2			
Date	Time	Lapse (Minutes)	Volume Added (ml)	$\begin{aligned} & \text { Rate (I) } \\ & (\mathrm{ml} / \mathrm{min}) \end{aligned}$	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	$\begin{aligned} & \text { Rate (I) } \\ & (\mathrm{ml} / \mathrm{min}) \end{aligned}$	Infiltration Rate (I) (inches/min)
10/26/16	10:45 AM	---	---	---	--	---	---	---	---
10/26/16	11:00 AM	15	30	2.0	0.002	15	1,000	66.7	0.083
10/26/16	11:15 AM	15	30	2.0	0.002	15	850	56.7	0.070
10/26/16	11:30 AM	15	20	1.3	0.002	15	680	45.3	0.056
10/26/16	11:45 AM	15	20	1.3	0.002	15	600	40.0	0.050
						15	600	40.0	0.050
						15	600	40.0	0.050
						15	600	40.0	0.050

TEST 1 INFILTRATION RATE
Inches per minute
0.00

Inches per hour
0.10

Inches per day

INFILTRATION TEST 2

TEST 2 INFILTRATION RATE

Inches per minute
Inches per hour
Inches per day
71.60

SITE INVESTIGATION AND PERCOLATION TEST REPORT FOR STORMWATER INFILTRATION

Site Location: Snipes Tract

Municipality: Lower Makefield
County: Bucks
Soil Type: PnB

Soil Description:
Soil Description Completed by: Terry Harris, SEO \#02596

Date: October 14, 2017

Test Pit \# F \quad Additional Pits
Inches

0	TO	8
8	TO	25
25	TO	34
34	TO	90
		TO

Percolation Test:
Percolation Test Completed by: James Haklar Date: May 10, 2017

Test depth below existing grade: $\quad 2$ Feet

Weather Conditions: Soil Conditions:		Below 40 F		40 F or above		\mathbf{X} Dry	Rain, Sleet, Snow (last 24 hours)					
		Wet	\mathbf{X} D			24 Hour Presoak	Yes	No				
Hole No.	Yes	No	Reading Interval	Reading No. 1: Inches of Drop	Reading No. 2: Inches of Drop		Reading No. 3: Inches of Drop	Reading No. 4: Inches of Drop	Reading No. 5: Inches of Drop	Reading No. 6: Inches of Drop	Reading No. 7: Inches of Drop	Reading No. 8: Inches of Drop
1	x		XX / 30	0.250	0.250	0.125	0.125					
2	X		XX / 30	0.250	0.250	0.250	0.250					
3	x		XX / 30	0.125	0.125	0.125	0.125					

${ }^{* * *}$ Water remaining in the hole at the end of the final 30 minute presoak? Yes, use 30 minute interval; No use 10 minute interval

Total of Minutes / Inch:	480.00
Total Number of Holes:	2

* - Perc rate not used in calculation per BMP Guidance

Site Name:
Pit \# / Location:
Date Soil Described:
Personnel:
Infiltration Date:
Personnel:

Snipes Tract - Lower Makefield Township

 GOctober 14, 2016
Mr. Terry Harris

Head or Depth of Water (H):	6 Inches
Outer Ring Diameter:	12 Inches
Inner Ring Diameter:	8 Inches
Depth of Test Below Grade:	Inches
Soil Description:	Soil Type: PnB

0
9
21
33

$\frac{2}{21}^{2}$ TO \qquad A, 10YR4/3, SIL, VFR, GR
B1, 10YR5/8, SIL, FR, SBK
B2, 10YR5/6, SIL, FR, SBK
B3, 5YR3/3, SIL, VFI, SBK
TO
O
TO
TO \qquad
\qquad
\qquad
\qquad
INFILTRATION TESTING WAS NOT PERFORMED AT THIS LOCATION

INNER RING READINGS

INFILTRATION TEST 1

Date	Time

Lapse (Minutes)	Volume Added (ml)

Rate (I)
$(\mathrm{ml} / \mathrm{min})$ Infiltration Rate (I) (inches/min)

INFILTRATION TEST 2

Lapse (Minutes)	Volume Added (ml)	Rate (I) $(\mathrm{ml} / \mathrm{min})$	Infiltration Rate (I) (inches/min)

---	---	---	---

TEST 1 INFILTRATION RATE
Inches per minute
Inches per hour
Inches per day

TEST 2 INFILTRATION RATE
Inches per minute
Inches per hour
Inches per day

Site Name: \quad Snipes Tract - Lower Makefield Township
Pit \# / Location: H
Date Soil Described: October 14, 2016
Personnel:
Infiltration Date:
Personnel:

Mr. Terry Harris
October 14, 2016
Mr. Terry Harris

Head or Depth of Water (H):	6 Inches
Outer Ring Diameter:	12 Inches
Inner Ring Diameter:	8 Inches
Depth of Test Below Grade:	48 Inches
Soil Description:	Soil Type: PnB

\qquad TO \qquad
\qquad
TO \qquad
TO \qquad
\qquad
, \qquad

A, 10YR4/3, GIL, VAR, GR
B1,10YR5/8, SIL, FR, SBK
B2, 5YR3/3, SIL, VFI, SB
BEDROCK
oil Type: PnB
\qquad
\qquad

INNER RING READINGS

INFILTRATION TEST 1

Lapse (Minutes)	Volume Added (ml)	Rate (I) $(\mathrm{ml} / \mathrm{min})$	Infiltration Rate (I) (inches $/ \mathrm{min})$

---	---	---	---
15	0	0.0	0.000
15	40	2.7	0.003
15	20	1.3	0.002
15	10	0.7	0.001
15	0	0.0	0.000

INFILTRATION TEST 2

Lapse (Minutes)	Volume Added (ml)	Rate (I) $(\mathrm{ml} / \mathrm{min})$	Infiltration Rate (I) (inches/min)

---	---	---	---
15	0	0.0	0.000
15	0	0.0	0.000
15	0	0.0	0.000
15	0	0.0	0.000
15	0	0.0	0.000

TEST 1 INFILTRATION RATE
Inches per minute
Inches per hour
Inches per day

TEST 2 INFILTRATION RATE
Inches per minute
Inches per hour
Inches per day

Site Name:
 Snipes Tract - Lower Makefield Township
 Pit \# / Location: I

Date Soil Described: October 14, 2016
Personnel:
Infiltration Date:
Personnel:

Mr. Terry Harris
October 14, 2016
Mr. Terry Harris

Head or Depth of Water (H):	6 Inches
Outer Ring Diameter:	12 Inches
Inner Ring Diameter:	8 Inches
Depth of Test Below Grade:	48 Inches
Soil Description:	Soil Type: PnB

\qquad TO \qquad A, 10YR4/3, SIL, VFR, GR
B1, 10YR5/8, SIL, FR, SBK
B2, 2.5YR5/4, SL, VFR, GR
B3, 2.5YR5/3, SL, VFR, GR
\qquad
то \qquad
TO \qquad
\qquad
\qquad

INNER RING READINGS

INFILTRATION TEST 1

Lapse (Minutes)	Volume Added (ml)	Rate (I) $(\mathrm{ml} / \mathrm{min})$	Infiltration Rate (I) (inches $/ \mathrm{min})$

$10 / 14 / 16$	$12: 40 \mathrm{PM}$
$10 / 14 / 16$	$12: 55 \mathrm{PM}$
$10 / 14 / 16$	$1: 10 \mathrm{PM}$
$10 / 14 / 16$	$1: 25 \mathrm{PM}$
$10 / 14 / 16$	$1: 40 \mathrm{PM}$
$10 / 14 / 16$	$1: 55 \mathrm{PM}$

---	---	---	---
15	650	43.3	0.054
15	700	46.7	0.058
15	670	44.7	0.056
15	680	45.3	0.056
15	670	44.7	0.056

INFILTRATION TEST 2

Lapse (Minutes)	Volume Added (ml)	Rate (I) $(\mathrm{ml} / \mathrm{min})$	Infiltration Rate (I) (inches/min)

---	---	---	---
15	500	33.3	0.041
15	460	30.7	0.038
15	420	28.0	0.035
15	470	31.3	0.039
15	440	29.3	0.036

TEST 1 INFILTRATION RATE
Inches per minute
0.06

Inches per hour
3.33

Inches per day
79.95

TEST 2 INFILTRATION RATE
Inches per minute
Inches per hour2.19

Inches per day

Site Name:
Snipes Tract - Lower Makefield Township
Pit \# / Location: J
Date Soil Described: October 14, 2016
Personnel:
Infiltration Date:
Personnel:

Mr. Terry Harris

Per

Head or Depth of Water (H):	6 Inches
Outer Ring Diameter:	12 Inches
Inner Ring Diameter:	8 Inches
Depth of Test Below Grade:	Inches
Soil Description:	Soil Type: PnB

$$
\begin{array}{ccc}
0 & \text { TO } & 8 \\
\hline \frac{8}{19} & \text { TO } & \text { TO } \\
\hline \frac{19}{31} & \text { TO } & 31 \\
\hline 30 & \text { TO } \\
\hline 60 & \text { TO } \\
\hline & \text { TO } \\
\hline & \text { TO } \\
\hline
\end{array}
$$

Soil Type: PnB

INFILTRATION TESTING WAS NOT PERFORMED AT THIS LOCATION

INNER RING READINGS

Date	Time

INFILTRATION TEST 1

Lapse (Minutes)	Volume Added (ml)	Rate (I) $(\mathrm{ml} / \mathrm{min})$	Infiltration Rate (I) (inches/min)

---	---	---	---

INFILTRATION TEST 2

Lapse (Minutes)	Volume Added (ml)	Rate (I) $(\mathrm{ml} / \mathrm{min})$	Infiltration Rate (I) (inches/min)

---	---	---	---

TEST 1 INFILTRATION RATE
Inches per minute
Inches per hour
Inches per day

TEST 2 INFILTRATION RATE
Inches per minute
Inches per hour
Inches per day

\qquad TO \qquad A, 10YR4/3, SIL, VFR, GR
B1, 7.5YR5/8, SIL, FR, SBK
B2, 2.5YR5/3, SL, VFR, GR
то

$$
0
$$

\qquad
ТО
\qquad
O
\qquad

Site Name:	Snipes Tract - Lower Makefield Township
Pit \# / Location:	K

Pit\#/Location. K
Date Soil Described. October 14, 2016
Personnel:
Infiltration Date:
Personnel:

Mr. Terry Harris
October 26, 2016
Mr. James Haklar

INNER RING READINGS

TEST 1 INFILTRATION RATE
Inches per minute
0.07

Inches per hour 4.08

Inches per day 97.85

TEST 2 INFILTRATION RATE
Inches per minute
Inches per hour 14.92

Inches per day
357.98

Site Name:
 Snipes Tract - Lower Makefield Township

Pit \# / Location: L
Date Soil Described: October 14, 2016
Personnel:
Infiltration Date:
Personnel:

Mr. Terry Harris

\qquad

INFILTRATION TESTING WAS NOT PERFORMED AT THIS LOCATION

INNER RING READINGS

INFILTRATION TEST 1

Date	Time

Lapse (Minutes)	Volume Added (ml)

Rate (I)
$(\mathrm{ml} / \mathrm{min})$ Infiltration Rate (I)
(inches/min)

INFILTRATION TEST 2

Lapse (Minutes)	Volume Added (ml)	Rate (I) $(\mathrm{ml} / \mathrm{min})$	Infiltration Rate (I) (inches/min)

---	---	---	---

TEST 1 INFILTRATION RATE
Inches per minute
Inches per hour
Inches per day

TEST 2 INFILTRATION RATE
Inches per minute
Inches per hour
Inches per day

Site Name: \quad Snipes Tract - Lower Makefield Township
Pit \# / Location: M
Date Soil Described: October 14, 2016
Personnel:
Mr. Terry Harris
Infiltration Date:
Personnel:

Head or Depth of Water (H):	6 Inches
Outer Ring Diameter:	12 Inches
Inner Ring Diameter:	8 Inches
Depth of Test Below Grade:	Inches
Soil Description:	Soil Type: PnB

\qquad
\qquad

INFILTRATION TESTING WAS NOT PERFORMED AT THIS LOCATION

INNER RING READINGS

Date	Time

INFILTRATION TEST 1

Lapse (Minutes)	Volume Added (ml)	Rate (I) $(\mathrm{ml} / \mathrm{min})$	Infiltration Rate (I) (inches/min)

---	---	---	---

INFILTRATION TEST 2

Lapse (Minutes)	Volume Added (ml)	Rate (I) $(\mathrm{ml} / \mathrm{min})$	Infiltration Rate (I) (inches $/ \mathrm{min})$

---	---	---	---

TEST 1 INFILTRATION RATE
Inches per minute
Inches per hour
Inches per day

TEST 2 INFILTRATION RATE
Inches per minute
Inches per hour
Inches per day

Site Name: \quad Snipes Tract - Lower Makefield Township
Pit \# / Location: N
Date Soil Described: October 14, 2016
Personnel:
Infiltration Date:
Personnel:

Mr. Terry Harris
October 26, 2016
Mr. James Haklar
\qquad T
T
T
T
TO
TO
TO

O

Head or Depth of Water (H):	6 Inches
Outer Ring Diameter:	12 Inches
Inner Ring Diameter:	8 Inches
Depth of Test Below Grade:	48 Inches
Soil Description:	Soil Type: PnB

\qquad A, 10YR4/3, SIL, VFR, GR
B1, 10YR5/8, SIL, FR, SBK
B2, 2.5YR5/3, SL, VFI, GR
B3, 2.5YR5/3, SL, VFR, GR
\qquad
\qquad
\qquad
12 Inches
8 Inches
oil Type: PnB

$$
0
$$

\longrightarrow

INNER RING READINGS

Date	Time	Lapse (Minutes)	Volume Added (ml)	Rate (I) ($\mathrm{ml} / \mathrm{min}$)	Infiltration Rate (I) (inches/min)	Lapse (Minutes)	Volume Added (ml)	Rate (I) ($\mathrm{ml} / \mathrm{min}$)	Infiltration Rate (I) (inches/min)
10/26/16	8:20 AM	---	---	---	---	---	---	---	---
10/26/16	8:35 AM	15	100	6.7	0.008	15	200	13.3	0.017
10/26/16	8:50 AM	15	50	3.3	0.004	15	150	10.0	0.012
10/26/16	9:05 AM	15	30	2.0	0.002	15	150	10.0	0.012
10/26/16	9:20 AM	15	20	1.3	0.002	15	150	10.0	0.012

TEST 1 INFILTRATION RATE
Inches per minute
0.00

Inches per hour
0.10

Inches per day

INFILTRATION TEST 2

TEST 2 INFILTRATION RATE
Inches per minute
Inches per hour
Inches per day

Site Name: \quad Snipes Tract - Lower Makefield Township
Pit \# / Location: O
Date Soil Described: October 26, 2016
Personnel:
Mr. Terry Harris
Infiltration Date:
Personnel:

INFILTRATION TESTING WAS NOT PERFORMED AT THIS LOCATION

INNER RING READINGS

Date	Time

INFILTRATION TEST 1

Lapse (Minutes)	Volume Added (ml)	Rate (I) $(\mathrm{ml} / \mathrm{min})$	Infiltration Rate (I) (inches/min)

---	---	---	---

INFILTRATION TEST 2

Lapse (Minutes)	Volume Added (ml)	Rate (I) $(\mathrm{ml} / \mathrm{min})$	Infiltration Rate (I) (inches $/ \mathrm{min})$

---	---	---	---

TEST 1 INFILTRATION RATE
Inches per minute
Inches per hour
Inches per day

TEST 2 INFILTRATION RATE
Inches per minute
Inches per hour
Inches per day

SITE INVESTIGATION AND PERCOLATION TEST REPORT FOR STORMWATER INFILTRATION

Site Location: Snipes

Municipality: Lower Makefield
County: Bucks
Soil Type: PnB

Soil Description:
Soil Description Completed by: Terry Harris, SEO \#02596

Date: May 10, 2017

Test Pit \# P

Additional Pits
Inches

0	то	8
8	то	34
34	то	68
68	TO	96
	TO	
	TO	

A, 7.5YR5/4, SIL, FR, SBK
B1, 10YR6/6, SIL, FR, SBK
B2, 2.5YR4/4, SIL, FI, SBK
B3, 2.5YR4/4, VCBSIL, FI, SBK

Description of Horizon

\qquad

Percolation Test:
Percolation Test Completed by: James Haklar \quad Date: May 10, 2017

Test depth below existing grade: 5 Feet

Weather Conditions: Soil Conditions:		Below 40 F		40 F or above Frozen		\mathbf{X} Dry	Rain, Sleet, Snow (last 24 hours)					
		et	\mathbf{X} Dr			24 Hour	Presoak	Yes X	No			
Hole No.	Yes	No	Reading Interval	Reading No. 1: Inches of Drop	Reading No. 2: Inches of Drop		Reading No. 3: Inches of Drop	Reading No. 4: Inches of Drop	Reading No. 5: Inches of Drop	Reading No. 6: Inches of Drop	Reading No. 7: Inches of Drop	Reading No. 8: Inches of Drop
1	X		XX / 30	0.375	0.250	0.250	0.250					
2	X		XX/30	0.250	0.375	0.250	0.250					
3	x		XX/30	0.125	0.125	0.125	0.125					

${ }^{* * *}$ Water remaining in the hole at the end of the final 30 minute presoak? Yes, use 30 minute interval; No use 10 minute interval

Hole No.	Drop during final period	Perc. Rate as Minutes / Inch	Depth of Hole	"	Infiltration Rate (Reduction Factor from BMP Manual Applied)	
1^{*}	0.250	120.00	12			
2	0.250	120.00	12	"	180.00	Percolation Rate (minutes / inch)
3	0.125	240.00	12	"	6.00	Initial Water Depth (Inches)
					0.188	Average / Final W ater Level Drop (Inches)
					8.00	Diameter of Percolation Holes (Inches)

Total of Minutes / Inch:	360.00
Total Number of Holes:	2

[^2]Site Name: \quad Snipes Tract
Pit \# / Location: Pit Q
Date Soil Described: May 10, 2017
Personnel:
Infiltration Date: Terry Harris
Infitration Date: May 10, 2017
Personnel:

Matt Roberts

INNER RING READINGS

INFILTRATION TEST 1

Lapse	Volume	Rate (I)	Infiltration
(min.)	Added (ml)	$\mathrm{ml} /$ $\mathrm{min})$	Rate (I) (in./min.)

---	---	---	---
15	30	2.0	0.002
15	50	3.3	0.004
15	30	2.0	0.002
15	30	2.0	0.002

TEST 1 INFILTRATION RATE Inches per minute
Inches per hour
Inches per day
0.00
0.15
3.58

INFILTRATION TEST 2

Lapse	Volume	Rate (I)	Infiltration
(min.)	Added (ml)	(ml/ $\mathrm{min})$	Rate (I) (in./min.)

INFILTRATION TEST 3

Lapse	Volume	Rate (I)	Infiltration
(min.)	Added (ml)	(ml/ $\mathrm{min})$	Rate (I) (in./min.)

$5 / 10 / 17$	$8: 15 \mathrm{AM}$
$5 / 10 / 17$	$8: 30 \mathrm{AM}$
$5 / 10 / 17$	$8: 45 \mathrm{AM}$
$5 / 10 / 17$	$9: 00 \mathrm{AM}$
$5 / 10 / 17$	$9: 15 \mathrm{AM}$

---	---	---	---
15	100	6.7	0.008
15	200	13.3	0.017
15	180	12.0	0.015
15	250	16.7	0.021

TEST 2 INFILTRATION RATE

Inches per minute 0.02
Inches per hour $\quad 1.24$
Inches per day 29.83

---	---	---	---
15	0	0.0	0.000
15	150	10.0	0.012
15	70	4.7	0.006
15	80	5.3	0.007

TEST 3 INFILTRATION RATE

Inches per minute 0.01
Inches per hour 0.40
Inches per day
0.27 Inches per Hour (Average of Test 1 and 3, highest rate not utilized per BMP Manual)

Site Name: \quad Snipes Tract
Pit \# / Location: Pit R
Date Soil Described: May 10, 2017
Personnel:
Infiltration Date: Terry Harris
Infiltration Date: May 10, 2017
Personnel:

INNER RING READINGS

INFILTRATION TEST 1

Lapse	Volume	Rate (I)	Infiltration
(min.)	Added (ml)	(ml/ $\mathrm{min})$	Rate (I) (in./min.)

$5 / 10 / 17$	$8: 40 \mathrm{AM}$
$5 / 10 / 17$	$8: 55 \mathrm{AM}$
$5 / 10 / 17$	$9: 10 \mathrm{AM}$
$5 / 10 / 17$	$9: 25 \mathrm{AM}$
$5 / 10 / 17$	$9: 40 \mathrm{AM}$

---	---	---	---
15	0	0.0	0.000
15	0	0.0	0.000
15	0	0.0	0.000
15	0	0.0	0.000

TEST 1 INFILTRATION RATE
Inches per minute
0.00

Inches per hour
Inches per day
0.00 0.00

6 Inches

INFILTRATION TEST 2

Lapse	Volume	Rate (I)	Infiltration
(min.)	Added (ml)	(ml/ $\mathrm{min})$	Rate (I) (in./min.)

INFILTRATION TEST 3

Lapse	Volume	Rate (I)	Infiltration
(min.)	Added (ml)	Rate (I) min)	(in./min.)

---	---	---	---
15	0	0.0	0.000
15	0	0.0	0.000
15	0	0.0	0.000
15	0	0.0	0.000

TEST 2 INFILTRATION RATE
Inches per minute
0.00

Inches per hour 0.00
Inches per day
0.00

---	---	---	---
15	0	0.0	0.000
15	0	0.0	0.000
15	0	0.0	0.000
15	0	0.0	0.000

TEST 3 INFILTRATION RATE
Inches per minute $\quad 0.00$
Inches per hour 0.00
Inches per day $\quad 0.00$

12 Inches
8 Inches
48 Inches
Soil Type: PnB

0	TO	13	FILL, 7.5YR4/3, SIL, FR, SBK
13	TO	24	Ab, 7.5YR4/4, SIL, FR, SBK
24	TO	48	B1, 7.5YR5/6, SIL, FR, SBK
48	TO	75	B2, 2.5YR4/4, SIL, FI, SBK
	TO		
	TO		
	TO		

Outer Ring Diameter:	12 Inches
Inner Ring Diameter:	8 Inches
Depth of Test Below Grade:	48 Inches
Soil Description.	Soil Type: PnB

Soil Description:
\qquad Inches per Hour

Site Name:	Snipes Tract
Pit \# / Location:	Pit S
Date Soil Described:	May 10, 2017
Personnel:	Terry Harris
Infiltration Date:	May 10, 2017
Personnel:	James Haklar

INNER RING READINGS

INFILTRATION TEST 1
INFILTRATION TEST 1

Lapse	Volume	Rate (I)	Infiltration
(min.)	Added (ml)	$\mathrm{ml} /$ $\mathrm{min})$	Rate (I) (in./min.)

$5 / 10 / 17$	$9: 15 \mathrm{AM}$
$5 / 10 / 17$	$9: 30 \mathrm{AM}$
$5 / 10 / 17$	$9: 45 \mathrm{AM}$
$5 / 10 / 17$	$10: 00 \mathrm{AM}$
$5 / 10 / 17$	$10: 15 \mathrm{AM}$

---	---	---	---
15	0	0.0	0.000
15	0	0.0	0.000
15	0	0.0	0.000
15	0	0.0	0.000

TEST 1 INFILTRATION RATE
Inches per minute
0.00

Inches per hour
0.00

Inches per day
0.00

INFILTRATION TEST 2

Lapse	Volume	Rate (I)	Infiltration
(min.)	Added (ml)	(ml/ $\mathrm{min})$	Rate (I) (in./min.)

6 Inches
12 Inches
8 Inches
72 Inches
Soil Type: PnB

Head or Depth of Water (H):	6 Inches
Outer Ring Diameter:	12 Inches
Inner Ring Diameter:	8 Inches
Depth of Test Below Grade:	72 Inches
	Soil Type: PnB

Soil Description:

SBK
 $\frac{\text { A , 7.5YR5/4, SIL, FR, SBK }}{\text { B1 10YR6/6, SIL, FR, SBK }}$
 B2, 2.5YR4/4, SIL, FI/FR, SBK

BEDROCK
\qquad
\qquad
\qquad
\qquad

---	---	---	---
15	0	0.0	0.000
15	0	0.0	0.000
15	0	0.0	0.000
15	0	0.0	0.000

TEST 2 INFILTRATION RATE
Inches per minute
0.00

Inches per hour 0.00
Inches per day 0.00

INFILTRATION TEST 3

Lapse	Volume	Rate (I)	Infiltration
(min.)	Added (ml)	Rate (I) min)	(in./min.)

---	---	---	---
15	460	30.7	0.038
15	260	17.3	0.022
15	200	13.3	0.017
15	180	12.0	0.015
15	170	11.3	0.014

TEST 3 INFILTRATION RATE
Inches per minute $\quad 0.01$
Inches per hour 0.85
Inches per day
20.29

APPENDIX F:

WORKSHEETS 1 THROUGH 5, 10

STORMWATER BMP INFORMATION CHART 5.B

Worksheet 4. Change in Runoff for 2-YR Storm Event

PROJECT:	Snipes Tract Athletic Fields
	35.40 Ac.
2-Year Rainfall:	3.36 in.
Total Site Area:	35.40 acres
Protected Site Area:	10.45 acres
Managed Area:	24.96 acres

Existing Conditions:

Cover Type/Condition	Soil Type	Area (sf)	Area (ac)	CN	S	$\begin{gathered} \text { la } \\ \left(0.2^{*} \mathrm{~S}\right) \end{gathered}$		Runoff Volume ${ }^{2}$ (ft ${ }^{3}$)
Woodland	B	763,567	17.53	55	8.18	1.64	0.30	19,085
Woodland	C	56,278	1.29	70	4.29	0.86	0.92	4,328
Meadow	B	90,004	2.07	58	7.24	1.45	0.40	2,995
Meadow	C	101,815	2.34	71	4.08	0.82	0.98	8,279
Meadow	D	49,952	1.15	78	2.82	0.56	1.39	5,794
Impervious	B/D	25,718	0.59	98	0.20	0.04	3.13	6,702
TOTAL:		1,087,334	24.96				7.12	47,182

Developed Conditions:

Cover Type/Condition	Soil Type	Area (sf)	Area (ac)	CN	S	$\begin{gathered} \text { la } \\ \left(0.2^{*} \mathrm{~S}\right) \end{gathered}$		Runoff Volume ${ }^{2}$ $\left(\mathrm{ft}^{3}\right)$
Lawn	B	670,739	15.40	61	6.39	1.28	0.51	28,571
Lawn	C	77,164	1.77	74	3.51	0.70	1.14	7,358
Lawn	D	143,936	3.30	80	2.50	0.50	1.53	18,304
Woods	C	12,391	0.28	70	4.29	0.86	0.92	953
Impervious	B/C/D	183,104	4.20	98	0.20	0.04	3.13	47,713
TOTAL:		1,087,334	24.96				7.23	102,899

2-Year Volume Increase (ft ${ }^{3}$): 55,717

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

1. Runoff (in) $=Q=(P-0.2 S)^{2} /(P+0.8 S)$ where

$$
\begin{aligned}
& P=2-\text { Year Rainfall (in) } \\
& S=(1000 / C N)-10
\end{aligned}
$$

2. Runoff Volume (CF) $=Q \times$ Area $\times 1 / 12$

$$
Q=\text { Runoff (in) }
$$

Area = Land Use Area (Sq. ft)

Note: Runoff Volume must be calculated for EACH land use type/condition and HSGI. The use of a weighted CN value for volume calculations is not acceptable.

3930-PM-WM0035 Rev. 12/2009

891,839

Infiltration Trench Calculations

1. Infiltration Trench from Inlet \#2 to Inlet \#3

Length = $\underline{170 \text { feet }}, \quad$ Width $=\underline{45 \text { feet }}$
Surface Area = 7,650 sf
Design Infiltration Rate $=1.52 / 2=\underline{0.760 \prime} / \mathrm{hr}$
2 Year Storm Runoff Volume = 44,345 cf

- Dewatering Time $=$ \qquad = 92 hrs > 72 hrs , use 24 hrs (0.76 " $/ \mathrm{hr})\left(1 \mathrm{ft} / 12^{\prime \prime}\right)(7,650 \mathrm{sf})$
- Infiltration Volume $=(24 \mathrm{hr})\left(0.76^{\prime \prime} / \mathrm{hr}\right)\left(1 \mathrm{ft} / 12^{\prime \prime}\right)(7,650 \mathrm{sf})=\underline{11,628 \mathrm{cf}}$
- Storage Volume

$$
\begin{aligned}
\text { Stone }=5.0(170 \mathrm{feet})(45 \mathrm{feet})(0.40 \text { Voids Ratio }) & =15,300 \mathrm{cf} \\
\text { Pipe }=.6(3.412 \mathrm{sf})(170 \mathrm{ft})\{(.5(0.4+1.9) / 2.0\} & =\underline{184 \mathrm{cf}} \\
\text { Total Storage } & =\underline{15,484 \mathrm{cf}}
\end{aligned}
$$

- Managed Volume $=11,628 \mathrm{cf}+15,484 \mathrm{cf}=\underline{27,112} \mathrm{cf}$

3. Infiltration Trench from Inlet \#18 to Inlet \#22

Length $=\underline{640}$ feet, \quad Width $=\underline{10 \text { feet }}$
Surface Area $=\underline{6,400 ~ s f}$
Design Infiltration Rate $=\underline{\mathbf{2 . 3 8 \prime \prime}} / \mathbf{h r}$
2 Year Storm Runoff Volume = 17,037 cf

- Dewatering Time $=$ \qquad $=14 \mathrm{hrs}<72 \mathrm{hrs}$
(2.38 " $/ \mathrm{hr})\left(1 \mathrm{ft} / 12^{\prime \prime}\right)(6,400 \mathrm{sf})$
- Managed Volume $=$ Infiltrated Volume $=\underline{17,037} \mathrm{cf}$

Worksheet 4. Change in Runoff for 2-YR Storm Event

Developed Conditions:

Cover Type/Condition	Soil Type	Area (sf)	Area (ac)	CN	S	$\begin{gathered} \text { la } \\ \left(0.2^{*} \mathrm{~S}\right) \end{gathered}$	Runoff ${ }^{1}$ (in)	Runoff Volume ${ }^{2}$ $\left(\mathrm{ft}^{3}\right)$
Lawn	B	251,136	5.77	61	6.39	1.28	0.51	10,697
Lawn	C	77,164	1.77	74	3.51	0.70	1.14	7,358
Woods	B	31,659	0.73	55	8.18	1.64	0.30	791
Woods	C	100,074	2.30	70	4.29	0.86	0.92	7,695
Impervious	B/C	68,320	1.57	98	0.20	0.04	3.13	17,803
TOTAL:		528,353	12.13				6.01	44,345

2-Year Volume Increase $\left(\mathrm{ft}^{3}\right)$:
44,345

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

1. Runoff (in) $=Q=(P-0.2 S)^{2} /(P+0.8 S)$ where

$$
\begin{aligned}
& P=2-Y e a r \text { Rainfall (in) } \\
& S=(1000 / C N)-10
\end{aligned}
$$

2. Runoff Volume $(C F)=Q \times$ Area $\times 1 / 12$

$$
\mathrm{Q}=\text { Runoff (in) }
$$

Area = Land Use Area (Sq. ft)

Note: Runoff Volume must be calculated for EACH land use type/condition and HSGI.
The use of a weighted CN value for volume calculations is not acceptable.

Worksheet 4. Change in Runoff for 2-YR Storm Event

PROJECT:
2-Year Rainfall:

Total Site Area:
Protected Site Area:
Managed Area:

Snipes Tract Athletic Fields Infiltration Trench I\#18

5.24 Ac.	
3.36 in.	
	5.24 acres
	acres
5.24 acres	

Existing Conditions:

Cover Type/Condition	Soil Type	Area (sf)	Area (ac)	CN	S	$\begin{gathered} \text { la } \\ \left(0.2^{*} \mathrm{~S}\right) \end{gathered}$	Runoff ${ }^{1}$ (in)	Runoff Volume ${ }^{2}$ (ft ${ }^{3}$)
Woodland	B		0.00	55	8.18	1.64	0.30	0
Woodland	C		0.00	70	4.29	0.86	0.92	0
Meadow	B		0.00	58	7.24	1.45	0.40	0
Meadow	C		0.00	71	4.08	0.82	0.98	0
Meadow	D		0.00	78	2.82	0.56	1.39	0
Impervious	B/D		0.00	98	0.20	0.04	3.13	0
TOTAL:			0.00				7.12	0

Developed Conditions:

Cover Type/Condition	Soil Type	Area (sf)	Area (ac)	CN	S	$\begin{gathered} \text { la } \\ \left(0.2^{*} \mathrm{~S}\right) \end{gathered}$	Runoff ${ }^{1}$ (in)	Runoff Volume ${ }^{2}$ (ft ${ }^{3}$)
Lawn	B	171,141	3.93	61	6.39	1.28	0.51	7,290
Lawn	C		0.00	74	3.51	0.70	1.14	0
Woods	B	21,673	0.50	55	8.18	1.64	0.30	542
Woods	C		0.00	70	4.29	0.86	0.92	0
Impervious	B/C	35,327	0.81	98	0.20	0.04	3.13	9,205
TOTAL:		228,141	5.24				6.01	17,037

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

1. Runoff $($ in $)=Q=(P-0.2 S)^{2} /(P+0.8 S)$ where

$$
\begin{aligned}
& P=2-Y e a r \text { Rainfall (in) } \\
& S=(1000 / C N)-10
\end{aligned}
$$

2. Runoff Volume (CF) $=Q \times$ Area $\times 1 / 12$

$$
\mathrm{Q}=\text { Runoff (in) }
$$

Area = Land Use Area (Sq. ft)

Note: Runoff Volume must be calculated for EACH land use type/condition and HSGI. The use of a weighted CN value for volume calculations is not acceptable.

Appendix D. Worksheets

Worksheet 1. General Site Information

INSTRUCTIONS: Fill out Worksheet 1 for each watershed

Date: November 16, 2016
Project Name: Snipes Tract Athletic Fields
Municipality: Lower Makefield Township
County: Bucks County
Total Area (acres): 36.26 acres
Major River Basin: Delaware River

Watershed: Delaware River South
Sub-Basin: Buck Creek
Nearest Surface Water(s) to Receive Runoff: Buck Creek
Chapter 93 - Designated Water Use/Existing Water Use: WWF (Warm Water Fishes, MF (Migratory Fishes)

Impaired according to Category 4 or 5 of the Integrated Water Quality Monitoring and Assessment Report? Yes \squareNo x

List Causes of Impairment:

Is there an established TMDL that applies:
Yes $\square \quad$ No \square
Total Maximum Daily Loads (TMDLS)

Is project subject to, or part of:
Municipal Separate Storm Sewer System (MS4) Requirements?
Yes \mathbb{X}
No

Existing or planned drinking water supply?
YesNo x

If yes, distance from proposed discharge (miles):
Approved Act 167 Plan?

Existing River Conservation Plan?
Yes X No

YesNo x

Worksheet 2. Sensitive Natural Resources from PA Stormwater Best Management Practices Chapter 5

INSTRUCTIONS

1. Provide Sensitive Resources Map according to non-structural BMP 5.4.1 in Chapter 5. This map should identify wetlands, woodlands, natural drainage ways, steep slopes, and other sensitive natural areas.
2. Summarize the existing extent of each sensitive resource in the Existing Sensitive Resources Table (below, using Acres). If none present, insert 0.
3. Summarize Total Protected Area as defined under BMPs in Chapter 5.
4. Do not count any area twice. For example, an area that is both a floodplain and a wetland may only be considered once.

EXISTING NATURAL SENSITIVE RESOURCE	MAPPED? Yes/no/n/a	TOTAL AREA (Ac.)	PROTECTED AREA (Ac.)
Waterbodies			
Floodplains			
Riparian Areas			
Wetlands			
Woodlands			0.08
Natural Drainage Ways	Yes	0.16	0.485
Steep Slopes, $15 \%-25 \%$		0.97	0.565
Steep Slopes, over 25%	Yes		
Other: Steep slopes 8% to 15%		1.13	
Other:			
TOTAL EXISTING:			

Worksheet 3. Nonstructural BMP Credits from PA Stormwater Best Management Practices Manual (SW BMP

PROTECTED AREA

1.1 Area of Protected Sensitive/Special Value Features (see WS 2) $\quad 0.57$ Ac.
 1.2 Area of Riparian Forest Buffer Protection (see WS 2)
 $0 \quad$ Ac.
 3.1 Area of Minimum Disturbance/Reduced Grading (See Chapter 8, page 21 - SW 9.88 Ac BMP Manual) BMP Manual)

TOTAL $\underline{10.45}$ Ac

Site Area	Minus	Protected		Stormwater Management Area
		Area	=	
35.4	-	10.45	=	24.96
		he area that water manag		

VOLUME CREDITS

3.1 Minimum Soil Compaction (See Chapter 8, page 22 - SW BMP Manual)

3.3 Protect Existing Trees (See Chapter 8, page 23 - SW BMP Manual)

For Trees within 100 feet of impervious area:
Tree Canopy \qquad ft^{2}
x 1/2" x 1/12
$=\quad 516 \mathrm{ft}^{3}$
5.1 Disconnect Roof Leaders to Vegetated Areas (See Chapter 8 page 25 - SW BMP Manual)

For runoff directed to areas protected under 5.8.1 and 5.8.2
Roof Area $\mathrm{ft}^{2} \quad \mathrm{x} 1 / 3^{\prime \prime} \times 1 / 12$
$=$ \qquad ft^{3}

For all other disconnected roof areas
Roof Area \qquad ft^{2}
x 1/4" x 1/12
$=$
113 ft^{3}
5.2 Disconnect Non-Roof impervious to Vegetated Areas (See Chapter 8, page 26 - SW BMP Manual)

For Runoff directed to areas protected under 5.8.1 and 5.8.2
\qquad $\mathrm{ft}^{2} \quad \mathrm{x} 1 / 3^{\prime \prime} \times 1 / 12$ = \qquad ft^{3}

For all other disconnected roof areas Impervious Area

Worksheet 4. Change in Runoff Volume for 2-YR Storm Event

PROJECT:

Drainage Area:
2-Year Rainfall: \qquad in

Total Site Area: \qquad acres
Protected Site Area: \qquad acres
Managed Area: acres

Existing Conditions:

Cover Type/Condition	Soil Type	Area (sf)	Area (ac)	CN	S	$\begin{gathered} \text { la } \\ \left(0.2^{*} \mathrm{~S}\right) \\ \hline \end{gathered}$	Runoff ${ }^{1}$ (in)	Runoff Volume ${ }^{2}$ (ft ${ }^{3}$)
Woodland								
Meadow								
Impervious								
TOTAL:								

Developed Conditions

2-Year Volume Increase (ft3):

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

1. Runoff (in) $=Q=(P-0.2 S)^{2} /(P+0.8 \mathrm{~S})$ where

$$
\begin{aligned}
& P=2-Y e a r ~ R a i n f a l l ~(i n) ~ \\
& S=(1000 / C N)-10
\end{aligned}
$$

2. Runoff Volume (CF) $=Q \times$ Area $\times 1 / 12$

$$
\begin{gathered}
\mathrm{Q}=\text { Runoff (in) } \\
\text { Area = Land use area (sq. } \mathrm{ft} \text {) }
\end{gathered}
$$

Note: Runoff Volume must be calculated for EACH land use type/condition and HSGI. The use of a weighted CN value for volume calculations is not acceptable.

Worksheet 5. Structural BMP Volume Credits

PROJECT: SUB-BASIN:

Snipes Tract Athletic Fields
Buck Creek/ Delaware River South

(Required Control Volume minus Non-structural Credit)
$\left.\begin{array}{|ll|l|l|}\hline \text { Proposed BMPs from PA Stormwater Best Management Practices Manual } \\ \text { Chapter 6 }\end{array} \quad \begin{array}{c}\text { Area } \\ \left(\mathrm{ft}^{2}\right)\end{array} \quad \begin{array}{c}\text { Volume Reduction } \\ \text { Permanently } \\ \text { Removed } \\ \left(\mathrm{ft}^{3}\right)\end{array}\right]$

Total Structural Volume $\left(\mathrm{ft}^{3}\right):$	$44,149 \mathrm{cf}$
Structural Volume Requirement $\left(\mathrm{ft}^{3}\right):$	$41,788 \mathrm{cf}$
DIFFERENCE	$2,361 \mathrm{cf}$

Worksheet 10 －Water Quality Compliance for Nitrate

Does the site design incorporate the following BMPs to address nitrate pollution？A summary＂yes＂rating is achieved if at least 2 Primary BMPs for nitrate are provided across the site or 4 secondary BMPs for nitrate are provided across the site （or the equivalent）＂provided across the site＂is taken to mean the specifications for that BMP set forward in Sections 5 and 6 are satisfied．
Proposed BMPs from PA Stormwater Best Management Practices Manual Chapter 5 \＆ 6

	Yes	No
Primary BMPs for Nitrate：	区	\square
NS BMP 5．4．2－Protect／Conserve／Enhance Riparian Buffers	\square	区
NS BMP 5．5．4－Cluster Uses at Each Site	区	\square
NS BMP 5．6．1－Minimize Total Disturbed Area	区	\square
NS BMP 5．6．3－Re－Vegetate／Re－Forest Disturbed Areas（Native Species）	\square	区
NS BMP 5．9．1－Street Sweeping／Vacuuming	囚	\square
Structural BMP 6．7．1－Riparian Buffer Restoration	\square	－
Structural BMP 6．7．2－Landscape Restoration	区	\square
	\square	\square
Secondary BMPs for Nitrate：	区	\square
NS BMP 5．4．1－Protect Sensitive／Special Value Features	区	\square
NS BMP 5．4．3－Protect／Utilize Natural Drainage Features	区	\square
NS BMP 5．6．2－Minimize Soil Compaction	区	\square
Structural BMP 6．4．5－Rain Garden／Bioretention	\square	区
Structural BMP 6．4．8－Vegetated Swale	\square	区
Structural BMP 6．4．9－Vegetated Filter Strip	区	\square
Structural BMP 6．6．1－Constructed Wetland	\square	区
Structural BMP 6．7．1－Riparian Buffer Restoration	\square	区
Structural BMP 6．7．2－Landscape Restoration	区	\square
Structural BMP 6．7．3－Soils Amendment／Restoration	\square	区

Stormwater BMP Information Chart 5.B revised March 15, 2016

		Infiltration Information					Drainage Information						BMP Information					
	Proposed Structural BMPs (site specific)	Measured Infiltration Rate ${ }^{9}$	Factor of Safety	Design Infiltration Rate	Dewatering Time ${ }^{1}$	Elevation of Limiting Zone- Water Table, Bedrock, etc.'	Total Drainage Area to BMP	Total Impervious Drainage Area to BMP	Infiltration BMP Surface Area	Total Drainage Area Loading 6 Ratio 6	Impervious Area Loading Ratio 7	Volume of Runoff Tributary to BMP During the $2 \mathrm{yr} / 24 \mathrm{hr}$ Design Storm ${ }^{5}$	Calculated Infiltration Volume (from storms up to and including 2yr/24hr)	Calculated Managed Volume (from storms up to and including 2yr/24hr)	Maximum water surface elevation in BMP from 2yr storm ${ }^{3}$	Infiltration Elevation Bottom of Bed/ Basin ${ }^{3}$		Elevation of E\&S Sediment Basin Bottom (if applies)
		in./hr.	Min. of 2	in./hr.	hrs.		sq. ft	sq. ft.	sq. ft.			cf	cf	cf				
BMP 6.4.1	Pervious Pavement w/ Infiltration Bed																	
BMP 6.4.2	Infiltration Basin																	
BMP 6.4.3	Subsurface Infiltration Bed																	
BMP 6.4.4	Infiltration Trench From Inlet \#2 to \#3 From Inlet \#18 to Inlet \#22	$\begin{aligned} & 1.44 \\ & 4.75 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.72 \\ & 2.38 \end{aligned}$	$\begin{aligned} & 72 \\ & 14 \end{aligned}$	$\begin{aligned} & 164.0 \\ & 167.5 \end{aligned}$	$\begin{aligned} & 528,353 \\ & 228,140 \end{aligned}$	$\begin{aligned} & 68,320 \\ & 35,327 \end{aligned}$	$\begin{aligned} & 7,650 \\ & 6,400 \end{aligned}$	$\begin{aligned} & 69 \\ & 36 \end{aligned}$	$\begin{aligned} & 9 \\ & 6 \end{aligned}$	$\begin{aligned} & 44,345 \\ & 17,037 \end{aligned}$	$\begin{aligned} & 11,628 \\ & 17,037 \end{aligned}$	$\begin{aligned} & 27,112 \\ & 17,037 \end{aligned}$	$\begin{aligned} & 171.00 \\ & 174.00 \end{aligned}$	$\begin{aligned} & 166.00 \\ & 173.00 \end{aligned}$	$\begin{aligned} & 168.3 \\ & 173.0 \end{aligned}$	$\begin{aligned} & \mathrm{N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$
BMP 6.4.5	Rain Garden/Bioretention																	
BMP 6.4.6 Other	Dry Well / Seepage Pit																	
Total									14,050				28,665	44,149				
BMP 6.4.7	Constructed Filter																	
BMP 6.4.8	Vegetated Swale																	
BMP 6.4.9 BMP 6.4.10	Vegetated Filter Strip Infilt. Berm \& Ret. Grading																	

All information should be based on the 2 -year/24-hour storm
Provide page numbers from the stormwater narrative identifying the location of the above information.
${ }^{1}$ Can include active infiltration time - dewatering time should not exceed 72 hours after the 2 -year/24-hour storm
${ }^{2}$ Depth to limiting zone is recommended to be at least 2 ft below infiltration testing elevation/proposed infiltration elevation.
${ }^{3}$ A maximum of 2 feet of Hydraulic head is recommended.
${ }^{4}$ Provide supporting field notes/documenation from soil evaluation.
${ }^{5}$ This value should be greater than or equal to the Volume to be Infiltrated or Managed by the BMP
${ }^{6}$ A maximum of $8: 1$ is recommended.
${ }^{7}$ A maximum of $5: 1$ is recommended; however, in carbonate geology areas, a maximum of $3: 1$ is recommended
${ }^{8}$ Calculated runoff volume that is managed in ways other than infiltration to address 25 PA Code Ch 102.8(g)(2)
${ }^{9}$ The infiltration testing information should be located on the plan view of the PCSM Plan and should include infiltration test elevation and rate.
Any deviations from the recommendations above should be adequately justified by a qualified professional and included with the application.
NOTE: This chart is for summary purposes only and should be consistent with all design calculations and worksheets.

APPENDIX G:

NOI REQUIRED DOCUMENTS

PLAN PREPARER RECORD OF TRAINING AND EXPERIENCE IN EROSION AND SEDIMENT POLLUTION CONTROL METHODS AND TECHNIQUES
and Post Construction Stormwater Management (PCSM) design methods and techniques
NAME OF PLAN PREPARER: Maryellen Saylor, P.E.

FORMAL EDUCATION:
Name of College or Technical Institute: The Pennsylvania State University
Curriculum or Program: College of Engineering, Civil
Dates of Attendance: From: August 1979 To: August 1983
Degree Received Bachelor of Science Civil Engineering

OTHER TRAINING:

Changes to the PADEP Chapter 102

Name of Training:	Regulations for the Reg'd Community	NPDES,MS4Permit Renewal_NPDES Workshop
Presented By:	PADEP	PADEP
Date:	November 2, 2012	January 5. 2012. May 24. 2016

EMPLOYMENT HISTORY:

Current Employer: Boucher \& James, Inc.

Telephone: \quad (215) 345-9400

Former Employer:	Pickering, Corts \& Summerson, Inc.
Telephone:	$(215) 968-9300$

RECENT E\&S PLANS PREPARED:

Name of Project:	Delancey Court		Giant Food Store	
County:	Bucks		Bucks	Bucks
Municipality:	Newtown Township		Middletown Township	
Permit Number:				
Approving Agency:	PADEP, BCCD			

DATE:
PROJECT NAME: Snipes Tract Athletic Fields
TMP: 20-016-001-001, 20-016-002
TOWNSHIP: Lower Makefield Township

Pursuant to the EPA eReporting Rule of October 22, 2015, please provide the following list of required permit data:

1. Primary NAICS Code. Provide the appropriate six-digit North American Industry Classification System (NAICS pronounced nākes) code that represents the primary economic activity of the project site. If choosing other, the most up-to-date list of NAICS codes can be found on the NAICS website (part of the US Census Bureau) at http://www.census.gov/eos/www/naics/ (find the "Downloads" list on the left side of the screen for the latest list of codes):
$\square 236115$ New Single-Family Housing Construction (except For-Sale Builders)
$\square 236116$ New Multifamily Housing Construction (except For-Sale Builders)
$\square 236117$ New Housing For-Sale Builders
$\square 236210$ Industrial Building Construction
$\square 236220$ Commercial and Institutional Building Construction
$\square 237110$ Water and Sewer Line and Related Construction
$\square 237120$ Oil and Gas Pipeline and Related Structures Construction
$\square 237130$ Power and Communication Line and Related Structures Construction
$\square 237310$ Highway, Street, and Bridge Construction
$\square 237990$ Other Heavy and Civil Engineering Construction
X Other NAICS code: NAICS Code 713940 Fitness and Recreational Sports Centers
2. Additional NAICS Code(s). Provide any additional six-digit North American Industry Classification System code(s) that represents the economic activity of the project site. More than one six-digit code may be provided.
3. Type of Ownership. Provide the type of facility located at the project site:
\square County Government
\square Federal Facility (U.S. Government)
$\square \quad$ Mixed Ownership (e.g. Public/Private)
Х Municipality (local)
$\square \quad$ Non-Government
\square School District
\square State Government

1. PROJECT INFORMATION

Project Name: Snipes Athletic Fields

Date of Review: 10/25/2016 11:10:50 AM
Project Category: Recreation, Campgrounds/parking lots, playgrounds
Project Area: 40.34 acres
County(s): Bucks
Township/Municipality(s): LOWER MAKEFIELD
ZIP Code: 19067
Quadrangle Name(s): LANGHORNE; TRENTON WEST
Watersheds HUC 8: Middle Delaware-Musconetcong
Watersheds HUC 12: Buck Creek-Delaware River
Decimal Degrees: 40.247412, -74.873235
Degrees Minutes Seconds: $40^{\circ} 14{ }^{\prime} 50.6815 " \mathrm{~N}, 74^{\circ} 52^{\prime} \mathbf{2 3 . 6 4 5 0}{ }^{\prime \prime}$ W

2. SEARCH RESULTS

Agency	Results	Response
PA Game Commission	No Known Impact	No Further Review Required
PA Department of Conservation and Natural Resources	No Known Impact	No Further Review Required
PA Fish and Boat Commission	Potential Impact	FURTHER REVIEW IS REQUIRED, See Agency Response
U.S. Fish and Wildlife Service	No Known Impact	No Further Review Required

As summarized above, Pennsylvania Natural Diversity Inventory (PNDI) records indicate there may be potential impacts to threatened and endangered and/or special concern species and resources within the project area. If the response above indicates "No Further Review Required" no additional communication with the respective agency is required. If the response is "Further Review Required" or "See Agency Response," refer to the appropriate agency comments below. Please see the DEP Information Section of this receipt if a PA Department of Environmental Protection Permit is required.

Note that regardless of PNDI search results, projects requiring a Chapter 105 DEP individual permit or GP 5, 6, 7, 8, 9 or 11 in certain counties (Adams, Berks, Bucks, Carbon, Chester, Cumberland, Delaware, Lancaster, Lebanon, Lehigh, Monroe, Montgomery, Northampton, Schuylkill and York) must comply with the bog turtle habitat screening requirements of the PASPGP.

Snipes Athletic Fields

Snipes Athletic Fields

3. AGENCY COMMENTS

Regardless of whether a DEP permit is necessary for this proposed project, any potential impacts to threatened and endangered species and/or special concern species and resources must be resolved with the appropriate jurisdictional agency. In some cases, a permit or authorization from the jurisdictional agency may be needed if adverse impacts to these species and habitats cannot be avoided.

These agency determinations and responses are valid for two years (from the date of the review), and are based on the project information that was provided, including the exact project location; the project type, description, and features; and any responses to questions that were generated during this search. If any of the following change: 1) project location, 2) project size or configuration, 3) project type, or 4) responses to the questions that were asked during the online review, the results of this review are not valid, and the review must be searched again via the PNDI Environmental Review Tool and resubmitted to the jurisdictional agencies. The PNDI tool is a primary screening tool, and a desktop review may reveal more or fewer impacts than what is listed on this PNDI receipt. The jursidictional agencies strongly advise against conducting surveys for the species listed on the receipt prior to consultation with the agencies.

PA Game Commission

RESPONSE:

No Impact is anticipated to threatened and endangered species and/or special concern species and resources.

PA Department of Conservation and Natural Resources RESPONSE:

No Impact is anticipated to threatened and endangered species and/or special concern species and resources.

PA Fish and Boat Commission RESPONSE:

Further review of this project is necessary to resolve the potential impact(s). Please send project information to this agency for review (see WHAT TO SEND).

PFBC Species: (Note: The Pennsylvania Conservation Explorer tool is a primary screening tool, and a desktop review may reveal more or fewer species than what is listed below.)

Scientific Name	Common Name	Current Status
Sensitive Species**	Endangered	

U.S. Fish and Wildlife Service RESPONSE:

No impacts to federally listed or proposed species are anticipated. Therefore, no further consultation/coordination under the Endangered Species Act (87 Stat. 884, as amended; 16 U.S.C. 1531 et seq. is required. Because no take of federally listed species is anticipated, none is authorized. This response does not reflect potential Fish and Wildlife Service concerns under the Fish and Wildlife Coordination Act or other authorities.

[^3]
WHAT TO SEND TO JURISDICTIONAL AGENCIES

If project information was requested by one or more of the agencies above, upload* or email ${ }^{\star}$ the following information to the agency(s). Instructions for uploading project materials can be found here. This option provides the applicant with the convenience of sending project materials to a single location accessible to all three state agencies. Alternatively, applicants may email or mail their project materials (see AGENCY CONTACT INFORMATION).
*Note: U.S.Fish and Wildlife Service requires applicants to mail project materials to the USFWS PA field office (see AGENCY CONTACT INFORMATION). USFWS will not accept project materials submitted electronically (by upload or email).

Check-list of Minimum Materials to be submitted:

x Project narrative with a description of the overall project, the work to be performed, current physical characteristics of the site and acreage to be impacted.
$\times \quad$ A map with the project boundary and/or a basic site plan(particularly showing the relationship of the project to the physical features such as wetlands, streams, ponds, rock outcrops, etc.)
In addition to the materials listed above, USFWS REQUIRES the following
\times SIGNED copy of a Final Project Environmental Review Receipt

The inclusion of the following information may expedite the review process.

\qquad Color photos keyed to the basic site plan (i.e. showing on the site plan where and in what direction each photo

 was taken and the date of the photos)Information about the presence and location of wetlands in the project area, and how this was determined (e.g., by a qualified wetlands biologist), if wetlands are present in the project area, provide project plans showing the location of all project features, as well as wetlands and streams.

4. DEP INFORMATION

The Pa Department of Environmental Protection (DEP) requires that a signed copy of this receipt, along with any required documentation from jurisdictional agencies concerning resolution of potential impacts, be submitted with applications for permits requiring PNDI review. Two review options are available to permit applicants for handling PNDI coordination in conjunction with DEP's permit review process involving either T\&E Species or species of special concern. Under sequential review, the permit applicant performs a PNDI screening and completes all coordination with the appropriate jurisdictional agencies prior to submitting the permit application. The applicant will include with its application, both a PNDI receipt and/or a clearance letter from the jurisdictional agency if the PNDI Receipt shows a Potential Impact to a species or the applicant chooses to obtain letters directly from the jurisdictional agencies. Under concurrent review, DEP, where feasible, will allow technical review of the permit to occur concurrently with the T\&E species consultation with the jurisdictional agency. The applicant must still supply a copy of the PNDI Receipt with its permit application. The PNDI Receipt should also be submitted to the appropriate agency according to directions on the PNDI Receipt. The applicant and the jurisdictional agency will work together to resolve the potential impact(s). See the DEP PNDI policy at https://conservationexplorer.denr.pa.gov/content/resources.

5. ADDITIONAL INFORMATION

The PNDI environmental review website is a preliminary screening tool. There are often delays in updating species status classifications. Because the proposed status represents the best available information regarding the conservation status of the species, state jurisdictional agency staff give the proposed statuses at least the same consideration as the current legal status. If surveys or further information reveal that a threatened and endangered and/or special concern species and resources exist in your project area, contact the appropriate jurisdictional agency/agencies immediately to identify and resolve any impacts.

For a list of species known to occur in the county where your project is located, please see the species lists by county found on the PA Natural Heritage Program (PNHP) home page (www.naturalheritage.state.pa.us). Also note that the PNDI Environmental Review Tool only contains information about species occurrences that have actually been reported to the PNHP.

6. AGENCY CONTACT INFORMATION

PA Department of Conservation and Natural Resources

Bureau of Forestry, Ecological Services Section 400 Market Street, PO Box 8552
Harrisburg, PA 17105-8552
Email: RA-HeritageReview@pa.gov
Fax:(717) 772-0271
PA Fish and Boat Commission
Division of Environmental Services
450 Robinson Lane, Bellefonte, PA 16823
Email: RA-FBPACENOTIFY@pa.gov
U.S. Fish and Wildlife Service

Pennsylvania Field Office
Endangered Species Section
110 Radnor Rd; Suite 101
State College, PA 16801
NO Faxes Please

PA Game Commission
Bureau of Wildlife Habitat Management
Division of Environmental Planning and Habitat Protection
2001 Elmerton Avenue, Harrisburg, PA 17110-9797
Email: RA-PGC_PNDI@pa.gov
NO Faxes Please

7. PROJECT CONTACT INFORMATION

Name: Maryellen Saylor, P.E.
Company/Business Name: Boucher \& James, Inc.
Address: 1456 Ferry Road, Building 500,
City, State, Zip: Doylestown, PA 18901
Phone:(215) 345-9400 ext. 118 Fax:(215) 345-9401
Email: msaylor@bjengineers.com

8. CERTIFICATION

I certify that ALL of the project information contained in this receipt (including project location, project size/configuration, project type, answers to questions) is true, accurate and complete. In addition, if the project type, location, size or configuration changes, or if the answers to any questions that were asked during this online review change, I agree to re-do the online environmental review.

Division of Environmental Services

Natural Diversity Section
450 Robinson Lane Bellefonte, PA 16823

814-359-5237
November 22, 2016

IN REPLY REFER TO

SIR\# 46851
Boucher \& James, Inc.
Kim Mcleod
1456 Ferry Road
Quakertown, Pennsylvania 18951

RE: \quad Species Impact Review (SIR) - Rare, Candidate, Threatened and Endangered Species PNDI Search No. 614582_2
 Snipes Athletic Fields
 BUCKS County: Lower Makefield Township

Dear Kim Mcleod:

This responds to your inquiry about a Pennsylvania Natural Diversity Inventory (PNDI) Internet Database search "potential conflict" or a threatened and endangered species impact review. These projects are screened for potential conflicts with rare, candidate, threatened or endangered species under Pennsylvania Fish \& Boat Commission jurisdiction (fish, reptiles, amphibians, aquatic invertebrates only) using the Pennsylvania Natural Diversity Inventory (PNDI) database and our own files. These species of special concern are listed under the Endangered Species Act of 1973, the Wild Resource Conservation Act, and the Pennsylvania Fish \& Boat Code (Chapter 75), or the Wildlife Code.

An element occurrence of a rare, candidate, threatened, or endangered species under our jurisdiction is known from the vicinity of the proposed project. However, given the nature of the proposed project, the immediate location, or the current status of the nearby element occurrence(s), no adverse impacts are expected to the species of special concern.

This response represents the most up-to-date summary of the PNDI data and our files and is valid for two (2) years from the date of this letter. An absence of recorded species information does not necessarily imply species absence. Our data files and the PNDI system are continuously being updated with species occurrence information. Should project plans change or additional information on listed or proposed species become available, this determination may be reconsidered, and consultation shall be reinitiated.

If you have any questions regarding this review, please contact Kathy Gipe at 814-359-5186 and refer to the SIR \# 46851. Thank you for your cooperation and attention to this important matter of species conservation and habitat protection.

Sincerely,

Christopher A. Urban, Chief Natural Diversity Section

CAU/KDG/dn

February 1, 2017
Ms. Rene Moyer, Permits Coordinator
559 Main Street, Suite 230

Bucks County Conservation District

SUBJECT: ACT 167 PLAN CONSISTENCY PERMIT APPLICATION NOTICE OF INTENT FOR COVERAGE UNDER THE GENERAL (PAG-02) NPDES PERMIT SNIPES TRACT ATHLETIC FIELDS
 PRELIMINARY / FINAL LAND DEVELOPMENT PLAN LOWER MAKEFIELD TOWNSHIP TAX MAP PARCEL NO'S 20-016-001-001 \& 20-016-002 PROJECT NO. 16-77-054L

Dear Rene:

The Post Construction Stormwater Management Plan for the above referenced project is consistent with the Lower Makefield Township Act 167 Plan (Chapter 173 Stormwater Management - Delaware River South Watershed, Ordinance No. 389).

If you have any questions, please do not hesitate to contact me.

Sincerely,

Mark W. Eisold, P.E.
Township Engineer

MWE/MESkam

CC: Terry Fedorchak, Township Manager Steve Ware, Planning \& Zoning Administrator

APPENDIX A

Land Use Information Questions

Responses to the following questions are required to determine applicability of DEP's Land Use Policy for Permitting of Infrastructure and Facilities.

Note: Applicants are encouraged to submit copies of local zoning approvals with their authorization application.

LAND USE INFORMATION		
1.	Is there an adopted county or multi-county comprehensive plan?	Yes $\mathrm{X} \quad$ No \square
2.	Is there an adopted municipal or multi-municipal comprehensive plan?	Yes X No \square
3.	Is there an adopted county-wide zoning ordinance, municipal zoning ordinance or joint municipal zoning ordinance?	Yes X No \square
If the applicant answers NO to either Question 1, 2, or 3, the provisions of the PA MPC are not applicable and the applicant does not need to respond to questions 4 and 5 below.		
4.	Does the proposed project meet the provisions of the zoning ordinance or does the proposed project have zoning approval? If zoning approval has been received, attach documentation.	Yes X No \square
5.	Have you attached Municipal and County Land Use Letters for the project?	Yes $\mathrm{X} \quad$ No \square

February 1, 2017
Mr. Steve Ware, Planning \& Zoning Administrator
559 Main Street, Suite 230

SUBJECT: ACT 67, 68 AND 127 NOTIFICATION SNIPES TRACT ATHLETIC FIELDS QUARRY ROAD AND DOLINGTON ROAD LOWER MAKEFIELD TOWNSHIP

 TAX MAP PARCEL NO. 20-016-001-001 \& 20-016-002 PROJECT NO. 16-77-054LDear Steve:
We are in receipt of the Acts 14, 67, 68 and 127 notification letter, dated January 6, 2017, and the attached Appendix C Municipal Land Use Letter form (PADEP NPDES Permit application) for the above referenced project. The Lower Makefield Township Zoning Ordinance is generally consistent with the Municipal Comprehensive Plan and the County Comprehensive Plan. The project meets the provisions of the Lower Makefield Township Zoning Ordinance. We have completed the form on behalf of the Township and have enclosed it with this letter.

If you have any questions, please do not hesitate to contact me.
Sincerely,

Mark W. Eisold, P.E.
Township Engineer
MWE/MES/kam
CC: Terry Fedorchak, Township Manager
Lower Makefield Township Board of Supervisors David Truelove, Esq., Township Solicitor

APPENDIX C

SAMPLE MUNICIPAL LAND USE LETTER
Date: January 30, 2017
To: Terry Fedorchak, Township Manager(Name of Applicant)
From: Lower Makefield Township/R
Re: Lower Makefield Township Snipes Athletic Fields (Name of DEP Permittee)

The municipality of Lower Makefield states that it:
x has adopted a municipal or multi-municipal comprehensive plan.
If yes, please provide date of adoption: October 20, 2003
\qquad has not adopted a municipal or multi-municipal comprehensive plan.

The municipality of Lower Makefield states that it:
\qquad has adopted a county zoning ordinance, or a municipal or joint-municipal zoning ordinance. has not adopted a county zoning ordinance, or a municipal or joint-municipal zoning ordinance.

If applicable:

The municipality of Lower Makefield __ states that its zoning ordinance is generally consistent with its municipal comprehensive plan and the county comprehensive plan.

The above referenced proposed project
\qquad meets the provisions of the local zoning ordinance

If zoning approval is required for the project to proceed, the above referenced project:
\qquad has received zoning approval.
\qquad has not received zoning approval.

If the proposed project has not received zoning approval:

What is the status of the zoning request for the proposed project? (e.g., Special Exception Approval from the Zoning Hearing Board required, Conditional Use approval from the Governing Body required)

Zoning Variances were granted to the Township by the Lower Makefield Township Zoning Hearing Board at their November 15, 2016 public Meeting.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Is there a legal challenge by the applicant with regard to zoning for the proposed project?

Name and Contact Information for Municipal Zoning Officer:
\qquad
\qquad
\qquad
\qquad
Additional Comments (attach additional sheets if necessary):
\qquad
\qquad
\qquad
\qquad
Submitted By:

Name	Marku Eisold, PiE.
Title	Ienouship Enguneer
Contact Information (Address \& Phone)	Boucher James, fha, (215)345-9400 $145 l e$ Ferry Road, Budg 500 , Daylestown, Pa 18901
Signature	Me (u) zol
Date	$2-1-17$

Ms. Lynn T. Bush
Executive Director
Bucks County Planning Commission
1260 Almshouse Road
Doylestown, PA 18901
Dear Ms. Bush:
Acts 14, 67, 68 and 127, which amended the Municipalities Planning Code, direct state agencies to consider comprehensive plans and zoning ordinances when reviewing applications for permitting of facilities and infrastructure, and specify that state agencies may rely upon comprehensive plans and zoning ordinances under certain conditions as described in Sections 619.2 and 1105 of the Municipalities Planning Code. The Pennsylvania Department of Environmental Protection's Policy for Consideration of Local Comprehensive Plans and Zoning Ordinances in DEP Review of Permits for Facilities and Infrastructure (DEP's Land Use Policy) provides direction and guidance to DEP staff, permit applicants, and local and county governments for the implementation of Acts 67, 68 and 127 of 2000. This policy can be found at www.dep.pa.gov; keyword: Land Use.

In accordance with DEP's Land Use Policy, enclosed please find a County Land Use Letter that is to be submitted with our permit application to DEP for an NPDES Permit for Stormwater Discharges Associated with Construction Activities. Please complete the attached form and return within 30 days to:

Name of Applicant: Lower Makefield Township
Address of Applicant: 1100 Edgewood Road, Yardley, PA 19067
Project Location: Quarry Road and Dolington Road, Lower Makefield Township, Bucks Co.. PA (Northwest and adjacent to the Intersection)

Project Description: Lower Makefield Township proposes the construction of a manicipal athletic field complex, which will include one entrance drive each from Dolington Road and Quarry Road, an internal loop road with parking areas, one small and three large athletic fields, a pavilion, a concession stand with restrooms, a future skatepark, a walking and biking trail system, and stormwater management/ infiltration facilities on the site. The site is proposed to be served by public water and sewer service. The disturbance of trees will be minimized with the proposed project design. The property is zoned $R-1$ Residential LowDensity and a Public Recreational Facility is a permitted use within this zoning district.

Ms. Lynn T. Bush
Bucks County Planning Commission
January 31, 2017
Page 2 of 2

Please do not send this form to DEP, as we must include the County Land Use Letter with our permit application. If we do not receive a response from you within 30 days, we shall proceed to submit our permit application to DEP without the County Land Use Letter. If the County Land Use Letter is not submitted with our permit application, and we provide proof to DEP that we attempted to obtain it, DEP will assume there are no substantive land use conflicts and proceed with the normal application review process.

If you have any questions, please do not hesitate to contact me at (215) 345-9400.
Sincerely,

Maryellen Saylor, P.E.
Project Engineer

MES/kam

Attachment - County Land Use Letter
cc: Bucks County Commissioners

APPENDIX B

SAMPLE COUNTY LAND USE LETTER

Date: \qquad
To: Terry Fedorchak, Township Manager(Name of Applicant)
From: \qquad County Planning Agency/Commission

Re: Lower Makefield Township Snipes Tract Athletic Field\$Name of DEP Permittee)

The County of \qquad states that it:
\qquad has adopled a county or multi-county comprehensive plan.
If yes, please provide date of adoption: December 21, 2011
\qquad has not adopted a county or multi-county comprehensive plan.

If applicable:

The above referenced project:
\qquad is consistent with the adopted county or multi-county comprehensive plan. is not consistent with the adopted county or multi-county comprehensive plan.

Additional Comments (attach additional sheets if necessary):
\qquad
\qquad
\qquad
\qquad

Submitted By:

Name	
Title	
Contact Information (Address \& Phone)	
Signature	
Date	

January 31, 2017

Mr. Steve Ware
Planning \& Zoning Administrator
Lower Makefield Township
1100 Edgewood Road
Yardley, PA 19067-1696

MUNICIPAL LAND USE LETTER

CERTIFIED MAIL NO. 70151730000212593743
559 Main Street, Suite 230
Bethlehem, PA 18018

Dear Steve:
Acts 14, 67, 68 and 127, which amended the Municipalities Planning Code, direct state agencies to consider comprehensive plans and zoning ordinances when reviewing applications for permitting of facilities and infrastructure, and specify that state agencies may rely upon comprehensive plans and zoning ordinances under certain conditions as described in Sections 619.2 and 1105 of the Municipalities Planning Code. The Pennsylvania Department of Environmental Protection's Policy for Consideration of Local Comprehensive Plans and Zoning Ordinances in DEP Review of Permits for Facilities and Infrastructure (DEP's Land Use Policy) provides direction and guidance to DEP staff, permit applicants, and local and county governments for the implementation of Acts 67, 68 and 127 of 2000. This policy can be found at www.dep.pa.gov, keyword: Land Use.

In accordance with DEP's Land Use Policy, enclosed please find a Municipal Land Use Letter that is to be submitted with our permit application to DEP for an NPDES Permit for Stormwater Discharges Associated with Construction Activities. Please complete the attached form and return within 30 days to:

Name of Applicant: Lower Makefield Township
Address of Applicant: 1100 Edgewood Road, Yardley, PA 19067
Project Location: Quarry Road and Dolington Road, Lower Makefield Township, Bucks Co., PA (Northwest and adjacent to the Intersection)

Project Description: Lower Makefield Township proposes the construction of a municipal athletic field complex, which will include one entrance drive each from Dolington Road and Quarry Road, an internal loop road with parking areas, one small and three farge athletic fields, a pavilion, a concession stand with restrooms, a future skatepark, a walking and biking trail system, and stormwater management/ infiltration facilities on the site. The site is proposed to be served by public water and sewer service. The disturbance of trees will be minimized with the proposed project design. The property is zoned R-1 Residential LowDensity and a Public Recreational Facility is a permitted use within this zoning district

Steve Ware
Lower Makefield Township
January 31, 2017
Page 2 of 2
Please do not send this form to DEP, as we must include the Municipal Land Use Letter with our permit application. If we do not receive a response from you within $\mathbf{3 0}$ days, we shall proceed to submit our permit application to DEP without the Municipal Land Use Letter. If the Municipal Land Use Letter is not submitted with our permit application, and we provide proof to DEP that we attempted to obtain it, DEP will assume there are no substantive land use conflicts and proceed with the normal application review process.

If you have any questions, please do not hesitate to contact me at (215) 345-9400.
Sincerely,

Maryellen Saylor, P.E.
Project Engineer

MES/kam

Attachment -Municipal Land Use Letter
cc: Jeffrey Benedetto, Chairman of the Board

APPENDIX C
 SAMPLE MUNICIPAL LAND USE LETTER

Date: January 30, 2017
To: Terry Fedorchak, Township Manager(Name of Applicant)
From: Lower Makefield Township/R(0)
Re: Lower Makefield Township Snipes Athletic Fields (Name of DEP Permittee)

The municipality of Lower Makefield states that it:
X has adopted a municipal or multi-municipal comprehensive plan.
If yes, please provide date of adoption: October 20, 2003
\qquad has not adopted a municipal or multi-municipal comprehensive plan.

The municipality of Lower Makefield states that it:
\qquad has adopted a county zoning ordinance, or a municipal or joint-municipal zoning ordinance. has not adopted a county zoning ordinance, or a municipal or joint-municipal zoning ordinance.

If applicable:
The municipality of _Lower Makefield _ states that its zoning ordinance is generally consistent with its municipal comprehensive plan and the county comprehensive plan.

The above referenced proposed project
\qquad meets the provisions of the local zoning ordinance
If zoning approval is required for the project to proceed, the above referenced project:
\qquad has received zoning approval. has not received zoning approval.

If the proposed project has not received zoning approval:

What is the status of the zoning request for the proposed project? (e.g., Special Exception Approval from the Zoning Hearing Board required, Conditional Use approval from the Governing Body required)

Zoning Variances were granted to the Township by the Lower Makefield Township Zoning Hearing Board at their November 15, 2016 public Meeting.

3150-PM-BWEW0035 Rev. 8/2016

Checklist
Is there a legal challenge by the applicant with regard to zoning for the proposed project?
\qquad
\qquad
\qquad

Name and Contact Information for Municipal Zoning Officer:

Additional Comments (attach additional sheets if necessary):
\qquad
\qquad
\qquad

Submitted By:

Name	Marku Eisold Pre.
Title	Township Engumeer
Contact Information (Address \& Phone)	145 Le Fervy Road, Budg SOO, Dgylestewon, Pa 18901 Bowcher sames, fol
Signature	
Date	

APPENDIX H:

PCSM COMPLETENESS REVIEW CHECKLIST

Characteristics of the project site，including the past，present and proposed land uses and the proposed alteration to the project site $\S 102.8(\mathrm{ff})(3)$					
Applicant		Reviewer		Item	$\begin{gathered} \text { Item } \\ \text { Location } \\ \hline \end{gathered}$
Included	Page Number	C	NC		
－	D 11 of 14	\square	\square	Permit boundaries	D
区	D 11 of 14	\square	\square	Proposed limits of disturbance	D
区	D 11 of 14	\square	\square	Proposed contours and grades	D
区	D 11 of 14	\square	\square	Proposed improvements（i．e．roads，buildings，utilities etc．）	D
区	PCSM N 3\＆4	\square	\square	Past，present and proposed land uses	N
区	D 11 of 14	\square	\square	Proposed waterways and stormwater management facilities shown on the plan maps	D
区	D 11 of 14	\square	\square	Proposed impervious areas minimized \＆shown on plan map（s）	D
Net change in volume and rate of stormwater §102．8（f）（4）					
Applicant		Reviewer		Item	$\begin{aligned} & \text { Item } \\ & \text { Location } \\ & \hline \end{aligned}$
Included	Page Number	C	NC		
区	PCSM N F－4	\square	\square	Design storm used for calculations identified＊Worksheet 4	N
区	PCSM N F－4	\square	\square	Pre－and post－construction hydrology runoff rate and volume are identified for the each drainage area of entire project site＊Worksheet 4	N
区	PCSM N F－4	\square	\square	The net change in runoff rate and volume are identified for each drainage area of the entire project site ＊Worksheet 4	N
区	$\begin{aligned} & \text { PCSM N B-2 } \\ & \text { C-2 \& F-4 } \end{aligned}$	\square	\square	Summary table in NOI consistent with runoff calculations，when applicants have utilized the manual to meet design standards	N
区	N／A	\square	\square	Documentation summarizing the PCSM requirements（rate，volume， and water quality）for a DEP approved Act 167 plan，if applicable	N
区	N／A	\square	\square	Documentation summarizing the alternative approach＇s design criteria for rate，volume and water quality，if applicable	N
Receiving surface waters §102．8（f）（5）					
Applicant		Reviewer		Item	$\begin{aligned} & \text { Item } \\ & \text { Location } \\ & \hline \end{aligned}$
Included	Page Number	C	NC		
区	D 11 of 14	\square	\square	Existing streams，wetlands，floodways，and watercourses shown on plan map（s）	D
区	D 11 of 14	\square	\square	Existing and designated uses identified	D or N
区	N／A	\square	\square	Boundaries for HQ or EV watersheds shown on plan map（s）	D
区	N／A	\square	\square	Wetland boundaries consistent with delineation report	D
Written Description of the PCSM BMPs §102．8（f）（6）					
Applicant		Reviewer		Item	$\begin{aligned} & \text { Item } \\ & \text { Location } \\ & \hline \end{aligned}$
Included	Page Number	C	NC		
区	$\begin{array}{\|l\|} \hline \text { D 11,12 of } 14 \\ \text { PCSM N } 5 \\ \hline \end{array}$	\square	\square	All permanent PCSM BMPs identified in the narrative and shown on plan drawings	D \＆N
区	D 12 of 14	\square	\square	Specifications for all permanent PCSM BMPs provided	D
区	D 12 of 14	\square	\square	Proprietary BMP systems are illustrated on the drawings in accordance with their manufacturer＇s requirements	D
Sequence of PCSM BMP implementation or installation §102．8（f）（7）					
Applicant		Reviewer		Item	Item Location
Included	Page Number	C	NC		
区	D 11 of 14	\square	\square	Complete and site specific sequence of BMP installations provided	D
区	D 11 of 14	\square	\square	Construction sequence addresses all structural BMPs	D
区	D 12 of 14	\square	\square	Sequence for individual BMP installation	D
区	D 11 of 14	\square	\square	Critical stages of BMP installation are identified	D
区	D 11 of 14	\square	\square	Protection provided for infiltration BMPs until drainage areas completely stabilized	D

Supporting calculations §102．8（f）（8）					
Applicant		Reviewer		＊Worksheets 1－5 and 10 and Predev and Post Dev Hydrographs and Routing Calculations Item	$\begin{aligned} & \text { Item } \\ & \text { Location } \\ & \hline \end{aligned}$
Included	Page Number	C	NC		
区	PCSM N F－1	\square	\square	Worksheets from the Stormwater BMP Manual provided when applicants have utilized the manual to meet design standards	N
区	$\begin{aligned} & \text { PCSM N B-2, } \\ & \text { C-2, F-4 } \end{aligned}$	\square	\square	Figures contained on worksheets consistent with those in NOI／application when applicants have utilized the manual to meet design standards	N
区	PCSM N C－1，	\square	\square	Calculations for all permanent BMPs and points of interest provided	N
区	PCSM N6 C－1 to C－48， F－1 to 6	\square	\square	Methodology used for all calculations is identified． Calculations demonstrating that rate，volume，and water quality were met in accordance with $102.8(\mathrm{~g})(2)(\mathrm{i}-\mathrm{iii})$ and $102.8(\mathrm{~g})(3)(\mathrm{i}-\mathrm{ii})$ AND／OR a DEP approved Act 167 plan OR an alternative approach	N
区	PCSM N C－1 to $\mathrm{C}-48$	\square	\square	Routing analysis to demonstrate peak control for the 2－， $10-50-$ ，and 100－year／24－hour storm events，which considers benefits of proposed BMPs provided	N
Plan drawings §102．8（f）（9）					
Applicant		Reviewer		Item	$\begin{aligned} & \text { Item } \\ & \text { Location } \\ & \hline \end{aligned}$
Included	Page Number	C	NC		
区	D 11 OF 14	\square	\square	Locations of all proposed BMPs shown along with tributary drainage areas	D
区	D 11 OF 14	\square	\square	Existing and proposed discharges \＆points of interest shown	D
区	D 11 OF 14	\square	\square	PCSM Plan drawings consistent with E\＆S Plan in relation to proposed contours，improvements，soils，wetlands，floodways， streams，discharge locations，etc．	D
区	D 12 OF 14	\square	\square	Construction details provided for all PCSM BMPs	D
区	D 11812 OF 14 PCSMN PCSM N C－1 to 4	\square	\square	Dimensions and elevations consistent with those used in supporting calculations	D \＆N
Long－term operation and maintenance schedule §102．8（f）（10）					
Applicant		Reviewer		Item	
Included	Page Number	C	NC		$\begin{gathered} \text { Item } \\ \text { Location } \end{gathered}$
区	D 12 OF 14	\square	\square	Inspection schedule of each permanent BMP is provided	D
区	D 12 OF 14	\square	\square	Directions for maintenance and／or replacement of each BMP provided	D
Recycling or disposal of materials §102．8（f）（11）					
Applicant		Reviewer		Item	$\begin{gathered} \text { Item } \\ \text { Location } \\ \hline \end{gathered}$
Included	Page Number	C	NC		
区	D 12 OF 14	\square	\square	Project wastes identified	D
区	D 12 OF 14	\square	\square	Directions for recycling／disposal of wastes provided	D
Geologic formations or soil conditions §102．8（f）（12）					
Applicant		Reviewer		Item	$\begin{aligned} & \text { Item } \\ & \text { Location } \\ & \hline \end{aligned}$
Included	Page Number	C	NC		
区	PCSM N 4 PCSM E－3	\square	\square	Potential for geologic or soil conditions to cause pollution during construction identified	N
区	D 12 OF 14	\square	\square	Instructions for proper handling and／or disposal of all materials which could cause pollution are provided	D
区	D 12 OF 14	\square	\square	Typical details \＆instructions provided for proper handling and／or disposal of all such materials	D
区	D 12 OF 14	\square	\square	Locations of all such materials clearly shown on plan maps	D

Potential thermal impacts §102.8(f)(13)					
Applicant		Reviewer		Item	Item Location
Included	Page Number	C	NC		
区	PCSM N 4	\square	\square	Description provided of how thermal impacts of stormwater runoff from project site were avoided, minimized, or mitigated	N
Riparian forest buffer management plan §102.8(f)(14)					
Applicant		Reviewer			
Included	Page Number	C	NC	Item	Item Location
\square	N/A	\square	\square	Existing and/or proposed riparian forest buffers shown on plan map(s)	D
\square	N/A	\square	\square	Impairment and TMDL status of the receiving water(s) for the project indicated	N
\square	N/A	\square	\square	Riparian buffer offset areas shown, if necessary	D \& N
\square	N/A	\square	\square	Riparian buffer or riparian forest buffer equivalency demonstration included, if necessary	D \& N
\square	N/A	\square	\square	Checklist for functional equivalency of riparian buffers and riparian buffers included	N

COMPLETENESS ITEMS BY PERMIT TYPE

Check-off: $\quad \mathrm{C}=$ Complete, $\mathrm{NC}=$ Not Complete
Item Location: $\quad \mathrm{D}=\mathrm{E} \& S /$ PCSM Drawings, $\mathrm{N}=\mathrm{E} \& S /$ /PCSM Narrative, D or $\mathrm{N}=$ Drawings or Narrative D \& N = Drawings and Narrative

CHECKLIST FOR NEW NPDES PERMITS					
Applicant		Reviewer		Item	Item Location
Included	Page Number	C	NC		
区	Checklist 1-8 E\&S N G-1 PCSMNH-1	\square	\square	1. All items included in the standard E\&S and PCSM completeness review checklist	N

CHECKLIST FOR NPDES PERMIT RENEWALS					
Applicant		Reviewer		N/A Item	Item Location
Included	Page Number	C	NC		
\square		\square	\square	1. If no changes have been made to the approved E \& S and PCSM plan, the applicant does not need to submit these plans and letters again. However, if changes have been made to the plans, the revised plans must be resubmitted for approval and all letters must be reapplied for and included.	

CHECKLIST FOR PHASED NPDES PERMIT

CHECKLIST FOR PHASED NPDES PERMIT						
Applicant		Reviewer		N/A	Item	$\begin{aligned} & \text { Item } \\ & \text { Location } \\ & \hline \end{aligned}$
Included	Page Number	c	NC			
\square		\square	\square	1. All items inclu	DES P	
\square		\square	\square	2. Anticipated pros	ntire p	
\square		\square	\square	3. Estimated tim	ases	

CHECKLIST FOR NPDES PERMIT MAJOR AMENDMENT

CHECKLIST FOR NPDES PERMIT MAJOR AMENDMENT						
Applicant		Reviewer		N/A	Item Location	
Included	Page Number	C	NC		Item	
\square		\square	\square	1. All items included in new NPDES permit application.		

[^0]: *:The anticipated velocity (V) should not exceed the maximum permissible shown in Table 6.6 for the proposed riprap protection. Adjust for less than full pipe flow. Use Manning's equation to calculate velocity for pipe slopes $\geq 0.05 \mathrm{ft} / \mathrm{ft}$.

[^1]: * - Perc rate not used in calculation per BMP Guidance

[^2]: * - Perc rate not used in calculation per BMP Guidance

[^3]: * Special Concern Species or Resource - Plant or animal species classified as rare, tentatively undetermined or candidate as well as other taxa of conservation concern, significant natural communities, special concern populations (plants or animals) and unique geologic features.
 ** Sensitive Species - Species identified by the jurisdictional agency as collectible, having economic value, or being susceptible to decline as a result of visitation.

